Direct voltage, direct current

- Option: Sensor supply, analogue output
- Allows to be placed side by side in grid and mosaics systems,
- Mounting into panels with thickness up to $\mathbf{5 0} \mathbf{~ m m}$

ORDER NUMBER OF TYPE DV 3.001.310B

2-wire transmitter connection for 24 VDC without galv.insulation and current input of $4-20 \mathrm{~mA}$.

Options

- green LED
- Protection: IP54
- Protection: IP65 (see reference)
- Plug in terminal with protection IP40
- Plug in terminal with protection IP54
- Plug in terminal with protection IP65 (see reference)

Reference: Decimal point, plus sign, blank digit, measuring time have to be pretended!

- Sensor supply $24 \mathrm{VDC} / 50 \mathrm{~mA}$
(power supply 24 VDC)
- Sensor supply $24 \mathrm{VDC} / 20 \mathrm{~mA}$ (power supply 230/115 VAC)
- Sensor supply 10 VDC/20 mA (power supply 24 VDC, 230/115 VAC)
- Sensor supply $24 \mathrm{VDC} / 50 \mathrm{~mA}$ (power supply 24 VDC galvanic insulated)
- Sensor supply $10 \mathrm{VDC} / 20 \mathrm{~mA}$ (power supply 24 VDC galvanic insulated)

With supply voltage AC and (DC galvanic insulated) the sensor supply is galvanic insulated from the measuring input!

- Analog output 0-10 VDC/10 mA
- Analog output 0-20 mA/load 500Ω
- Analog output 4-20 mA/load 500Ω
- Analog output 0-10 VDC/10 mA
(power supply 24 VDC galvanic insulated)
- Analog output 0-20 mA/load 500Ω (power supply 24 VDC galvanic insulated)
- Analog output 4-20 mA/load 500Ω (power supply 24 VDC galvanic insulated)
- Analog output with customer specified offset

The measuring inputs are not galvanic insulated from the analog output!

- Measuring input 0-1 mA ($1=$ plus and $7=$ minus)
- Power supplies $24 / 48$ VAC
- Relay contacts see type PVE4.xx1.3xx

Technical data, handling

CE-sign

For unlimited use of the instrument within the directives for electromagnetic compatibility 89/336/EC analogue input wires have to be used with shielded cable and cable's shield connected to earth ground at one end only.

Setting

1. Connect the instrument according to the wiring diagram and turn power on.
2. Adjustment of indication value: Detach the front pane with a small screwdriver leading between front panel and housing frame.
3. Set the maximum input voltage/current and adjust the desired indication value by means of the potentiometer.
4. In order to achieve maximum value indication of 1999, the following minimum input voltages are required at the various measuring inputs:

Measuring input	10 V	50 V	200 V	20 mA	200 mA
$\mathrm{U} / \mathrm{m} \min$	3.5 V	17 V	68 V	15.5 mA	155 mA
$\mathrm{U} / \mathrm{m} \max$	20 V	100 V	400 V	25 mA	240 mA

5. With input voltages smaller than U / I min, maximum value indication is not available!
6. Example of offset calculation for open measuring input:
$A A=$ initial indication value (-200)
MA=initial measuring value (2 V) $A E=$ final indication value (600) ME=final measuring value(10 V)

$$
\text { Offset }=-200-\left(\frac{600-(-200)}{(10 \mathrm{~V}-2 \mathrm{~V})}\right) \times 2 \mathrm{~V}=-400
$$

7. Simplified calculation with 4-20 mA: (only for indication $0=4 \mathrm{~mA}$)

$$
\text { Offset }=A A-\left(\frac{A E-A A}{M E-M A}\right) \times M A
$$

$$
\text { Offset }=-\left(\frac{A E}{4}\right)
$$

Observe the operational sign!

