User manual M1 - Multi-function device

Measuring inputs: Direct voltage, Direct current, Pt100(0), Thermocouple, Frequency, Rotation speed, Counter

Technical features:

- red display of -1999... 9999 digits (optional: green, orange or blue display)
- minimal installation depth: 25 mm without plug-in terminal
- digit height 14 mm
- far range power supply 100-240 VAC or standard supply 230 VAC or 24 VDC
- display adjustment via factory presetting or directly on the sensor signal
- min/max-memory
- 5 adjustable supporting points
- display flashing at threshold value exceedance/undercut
- Tara-function
- sliding averaging
- programming interlock via access code
- protection class IP65 at the front
- pluggable screw terminal
- accessories: PC-based configuration software incl. CD and USB-adapter for devices without keypad and for a simple adjustment of standard devices.

Identification

STANDARD-TYPES	ORDER NUMBER
Multi-function measuring inputs	M1-1UR4B.000X.S70xD
Housing size: $96 \times 48 \mathrm{~mm}$	M1-1UR4B.000X.570xD
	M1-1UR4B.000X.770xD

Options - break-down order key:

Contents

1. Brief description 1
2. Assemby 1
3. Electrical connection and connection examples 2
3.1. Terminal pin assignment 2
3.2. Connection examples 3
3.2.1. Voltage / Current 3
3.2.2. Pt100 / Pt1000 / Thermocouple 6
3.2.3. Frequency / Rotation speed 7
3.2.4. Counter 10
4. Description of function and operation 10
4.1. Operating and display elements 10
4.2. Programming software PM-TOOL 11
5. Setting-up the device 11
5.1. Switching on 11
6. Parameterisation 12
6.1. Selection of input signal, TYPE 12
6.1.1. Voltage/Current, VOLT, RMPE 13
Setting of the final and inital value, EMD, EMDR, OFFS, OFFRSetting of the decimal point, DOT. $\boldsymbol{\text { R }}$
Zero point slowdown of the input signal, ZERO
Taring value, TRRA
Overflow/underflow behaviour, OVER
Input of supporting points for linearisation of the measuring signal, SPC.R
6.1.2. Pt100, Pt1000, Thermocouple, PT.SE, THER 15
Temperature device in ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$, UNITTImpedance matching, OFFS
6.1.3. Pulse measuring, IMPU 16
6.1.3.1. Frequency, FREQ 16Pulse triggering, I.TYPRange of frequency, RRMGFilter, FILT
Adjustment of final and initial value, EMD, EMDF, OFFS, OFFF
Adjustment of the decimal point, DOT.F
Taring value, TRRA
Input of supporting points for linearisation of the measuring signal, SPC.F
6.1.3.2. Rotation speed, TURM 19Pulse triggering, I.TYP
Filter, FILT
Pulse per turn, PPT
Time base, TIME
Adjustment of the decimal point, $D O T$

Contents

6.1.3.3. Counter upwards/downwards, CO.UP, CO.DM 21
Pulse triggering, I.TYP
Counter base / Input signal, CO.BR
Wing, EDGE
Prescaler, PRES
Display value and pulse final numerical value, EMD, EMD.C
6.2. General device parameter 23
Adjustment of measuring time, SEC
Adjustment of the sliding average value, GLm
Presentation of initial/final value in the display, DI.HI, DI.LO
Allocation of functions onto the navigation keys, TRST
Display flashing at threshold value exceedance/undercut, FL8S
6.3. Alarm parameter 24
Limit value behaviour, RI.FU, R2.FU
Alarm flashing in case of limit value errors, B1.ER, R2.ER
Adjustment of the switching threshold, R1.LI, R2.LI
Adjustment of the hysteresis, R1.HY, R2.HY
Upper limit value, RI.LO, R2.LO
Lower limit value, R1.HI, R2.HI
Drop off delay, R1.OF, R2.OF
Activation delay, R1.OM, R2.OM
6.4. Safety parameter - locking of the parameterisation 26
Assignment of individual numerical codes, CODE
Activation/Deactivation of the programming interlock, RUM
7. Reset to default values 26
Setting back the parameter onto delivery condition
8. Technical data 27
9. Safety advices 30
10. Error elimination 31

1. Brief description

The panel instrument M1-1U is a 4-digit device for measuring of different kind of measuring signals such as direct voltage/direct current, temperature and frequency and a visual limit value monitoring via the display. The configuration happens via three front keys or via the optional PC-software PM-TOOL. An integrated programming interlock prevents unrequested changes of the parameter and can be released again via an individual code. The electrical connection happens on the rear side via plug-in terminals.
Selectable functions like e.g. the recall of the min/max-value, Tara-function, averaging, a direct change of the limit value in operating mode and additional measuring support points for linearisation complete the concept of a modern device.

2. Assembly

Please read the Safety instructions on page 30 before installation and keep this user manual for future reference.

1. After removing the fixing elements, insert the device.
2. Check the seal to make sure it fits securely.
3. Click the fixing elements back into place and tighten the clamping screws by hand. Then use a screwdriver to tighten them another half a turn.

CAUTION! The torque should not exceed 0.1 Nm !

3. Electrical connection

3.1. Terminal pin assignment

Type M1-1UR4A.000X.S70xD - supply 100-240 VAC, DC $\pm 10 \%$
Type M1-1UR4A.000X.570xD - supply 230 VAC $50 / 60 \mathrm{~Hz}$
Type M1-1UR4A.000X.770xD - supply 24 VDC galv. isolated

3.2. Connection examples

Below please find some connection examples, which demonstrate some practical applications:

3.2.1. Current / Voltage

2-wire sensor 4... 20 mA

2-wire sensor 4... 20 mA with external voltage source
 supply

3-wire sensor 0/4... 20 mA

3-wire sensor 0/4... 20 mA with external voltage source
 supply

3-wire sensor 0/1/2... 10 V

3-wire sensor 0-1/2... 10 V with external voltage supply
 supply

4-wire sensor 0/1/2... $10 \mathrm{~V}, 50 \mathrm{mV}$

3-wire sensor $0-1 / 2 \ldots 10 \mathrm{~V}, 50 \mathrm{mV}$ with external voltage supply

3.2.2. Temperature

Pt100 wire

Pt1000 2-wire

Thermocouple

3.2.3. Frequency / Rotation speed

Encoder with TTL-output

Encoder with external voltage source and TTL-output

Encoder with PNP-output

Encoder with NPN-output and required external resistance

Encoder with NPN-output

Encoder with external voltage source and NPN-output

Encoder with NPN-output and necessary external resistance

Encoder with external voltage source, NPN-output and necessary external resistance
 supply

Encoder with PNP-output and external resistance circuit

Encoder with external supply, PNP-output and external resistance circuit

Encoder with external supply, Namur output

3.2.4. Counter

If the device is used as counter, please use the connection examples for frequency/rotation speed and follow the examples given below for a performed reset input:

Manual setting back via external feeler

4. Description of function and operation

4.1. Operating and display elements

This device comes with three keys, which are used for parameterisation of the device and whose deposited functions can be called up during operation. Functions, that can be adjusted or changed are always signalised by a flashing of the display. Adjustments that were made in the "Parameterisation level" are always confirmed with [P] and thus saved. The device saves however automatically all adjustments and changes back into operating mode, if no more key actuation takes place within 10 seconds.

Key symbol	Function in operating mode	Function at parameterisation
Program key [P]	Change the parameterisation with program key [P].	Change into a lower parameterisation-level or to deposited values.
Minus key [$\mathbf{7}$]	Depending on adjusted key functions, use the minus key [\mathbf{V}] for calling up the minimum value or changing a lower limit value.	Change between parameter and changing of parameter within the value level.
Plus key [$\mathbf{4}$]	Depending on adjusted key functions, use the plus key [\mathbf{A}] for calling up the maximum-value or changing a lower limit value.	Change between parameter and changing of parameter within the value level.

A switched-on relay or an activated switching point will be reported optically by a flashing of the respective switching point LED next to the 7-segment display. A display over-/underflow is displayed by four bars „---,,.

Example: Setting up the device parameter, e.g. selection of the input signal

Example: Setting up numerical values, e.g. final value of measuring range

Numerical values are adjusted from the smallest to the highest digit with [\mathbf{A}] [\mathbf{V}] and confirmed digit per digit with [P]. A minus sign can only be adjusted on the leftmost digit. After the last digit, the display changes back into menu-level.

4.2. Programming via configuration software $P M-T O O L$ MUSB4:

The software comes on CD incl. an USB-cable with a device adapter. The connection happens via a 12-pole micromatch connector plug on the back and the PC is connected via an USB connector plug.

System requirements: PC with USB interface
 Software:
 Windows XP, Windows Vista

With this tool the device configuration can be created, readout and saved on the PC. Via the easy to handle program surface the parameter can be changed, whereat the mode of operation and the possible selection options can be preset via the program.

CAUTION!

During parameterisation with a connected measuring signal, make sure that the measuring signal has no mass supply to the programming plug. The programming adapter is galvanically not isolated and directly connected with the PC. Via polarity of the input signal, a current can discharge via the adapter and destroy the device as well as other connected components!

5. Setting-up the device

5.1. Switching on

Once the installation is complete, start the device by applying the voltage supply. Check beforehand once again that all the electrical connections are correct.

Starting sequence

For 1 second during the switching-on process, the segment test (88888) is displayed, followed by an indication of the software type and, after that, also for 1 second, the software version. After the start-up sequence, the device switches to operating/display mode.

6. Parameterisation

6.1. Selection of the input signal: type

During the adjustment of the type, an allocation of the input version takes place. Selectable are 5 input types: Voltage, Current, Pt100(0), Thermocouple and Pulse signal.

6．1．1．Device parameter for the allocation of voltage／current signals：VoLT，AMPE
VoLT： 4 voltage signals are available：0－10 V，0－2 V，0－1 V and $\mathbf{0 - 5 0} \mathbf{m V}$
AMPE：Choose between the following signals： $\mathbf{0 - 2 0} \mathbf{~ m A}$ and 4－20 mA
（P）LYPE $\frac{\Delta}{\nabla}$ HOLE $\frac{\Delta}{\nabla}$ RIPE $\frac{\Delta}{\nabla} P$ P． $5 E \frac{\Delta}{\nabla}$ LHE $\frac{\Delta}{\nabla}$ MRPG $\frac{\Delta}{\nabla} P$

Parameter		Menu item				Default$\Delta-1 \Delta$
VoLt	HaLt	D－1	－	O－	D－5］	
		5En．t				
AMPE	RПPE	O－20	4－20	$5 E n . R$		$\square-2 \square$
Parameter		Menu item				Default
End	End	－1993	to	9393		T $5 \square$
	with	5EniU 5En．R	additional	no［R ［RL		
OFFS	DFFS	－1993	to	9999		\square
	with	5En．ú SEn．R	additional	no［右 ［RL		
dot．A	dat．R	$\square \square$	to	D．000		\square
EndA	EndR	－19．93	to	93.39		18．0］
OFFA	$\square F F R$	－1993	to	99.99		$\square \square \square \square$
tarA	LRr月	－1939	to	9993		\square
ZErO	2Er口	$\square \square \square$	to	99		80
OUEr	DLET	no	RdL	－Rint	5 Pr	
		IGPr				no
SPC．A	5PL．R	$\square \square$	to	$\square 5$		\square

Parameter		Menu item			Default
dIS． 1	－i	$-13 \square$	to	З 3 〕	
InP． 1	$1 \rightarrow \square$	7 － 3	to	Э \square 口	
dIS． 2	■i 5．	－ 3 口	to	9 $3 \square$	
InP． 2	1 ローワ	－13	to	$\square \square \square$	
dIS． 3	－i 5.3	－19	to	9 $3 \square$	
InP． 3	$\cdots \cdots$	－19 3	to	9 $5 \square$	
dIS． 4	－i 4	－19	to	马马 ヨ	
InP． 4	1，ロ！	－9 3	to	3 3 ］	
diS． 5	－i 5.5	－19	to	马 3 口	
InP． 5	$1 \sim \square .5$	－19 3	to	$9 \square 3$	

End／OFFS：Upper range value／lower range value
By use of these values，the desired display value can be allocated to the measuring signal．If Sen．V or Sen．A was selected as the input type，you can choose between noCA and CAL． With noCA，the previously set display value is adopted，with CAL the adjustment is carried out over the measuring section and the analog input value is adopted．
dot．A：Comma／decimal place
Determine the decimal representation of the display value with the decimal point．It is used for the adjustment of the limit values，too．

EndA／OFFA：Rescale the measuring input values
With this function the final value／initial value can be rescaled to e．g． $19.5 \mathrm{~mA} / 3.2 \mathrm{~mA}$ without application of the measuring signal．
tArA：Setting up the Tara value／Offset value
The preset value is added to the linearised value．So the characteristic line can be shifted by the selected amount．

ZErO：Zero－point slowdown
Here，a range of values around the zero－point can be preset，where the display shows a zero．If e．g．a 10 is adjusted，the display would show a zero within a range of value of -10 to +10 and continue below with -11 and above with +11 ．

OVEr：Overflow and underflow behaviour
The overflow／underflow of the measuring input will be signaled by 4 horizontal bars at the top respectively by 4 bars at the bottom．Exception is input type „4－20＂（mA），where a measurand smaller than 1 mA can already be valuated as underflow．This shall indicate a sensor failure．

no	No additional check of the range takes place. By leaving the display range, the display remains on the smallest value „dl.Lo" respectively highest value „dl.HI".
$\mathbf{A d C}$	At exceedance/undercut of the display range "dl.Lo" / „dl.HI" over-/underflow will be displayed.
$\mathbf{r A n G}$	The measuring signal needs to be exactly in the preset measuring range "EnD""OFFS", so that an overflow will not be detected. The display range and transformer range will be monitored additionally.
$\mathbf{5 P r}$	The measuring signal is monitored over $\pm 5 \%$ of the adjusted measuring range. The display range will be monitored additionally.
$\mathbf{1 0} \mathbf{P r}$	The measuring signal is monitored over $\pm 10 \%$ of the adjusted measuring range. The display range will be monitored additionally.

SPC.A: Number of additional supporting points
To linearise nonlinear sensor values, five additional supporting points can be defined for the initial and final value. Only the activated supporting point parameters are shown.
dIS1...dIS5: Display values for supporting points
Under this parameter supporting points are defined on a value basis.
INP1...INP5: Analog values for supporting points
The supporting points are always preset according to the selected input signal ma/V. Here, desired analog values can be freely adjusted in ascending order.

6.1.2. Device parameter for the allocation of $\mathrm{Pt100}(0)$, Thermocouple: Pt .SE, THEr

Pt.SE: Three types are available:
Pt.Lo: Pt100 3-wire -50.0...200.0̊ㅡ / -58.0...392.0ํ ${ }^{\circ}$
Pt.Hi: Pt100 3-wire $-200 \ldots 850^{\circ} \mathrm{C} /-328 \ldots 1562^{\circ} \mathrm{F}$
Pt.tH: Pt1000 2-wire $-200 \ldots 850^{\circ} \mathrm{C} /-328 \ldots 1562^{\circ} \mathrm{F}$
tHEr: Select between: Thermocouple types L, J, K, B, S, N, E, T, R

Parameter		Menu item				Default PELa
Pt.SE	PL.5E	PL.Lo	PL.Hi	PL.LH		
Parameter		Menu item				Default
ther	LHEr	LSP.L	LUP.'	LSPH	LצP.L	LSP.L
		LSP.5	LЧP.п	LSP.E	LUP.L	
		LUP.r				

Parameter		Menu item			Default
Unlt	Un It	ㅁㄷ	마		ㅁ［
OFFS	OFFS	－19．3	to	13.9	
		－35．9	to	35.9	DTB．

UnIt：Type of temperature measurment
Select，if the temperature shall be displayed in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ with UnIt．
OFFS：Impedance matching
The value alignment at a temperature measuring in ${ }^{\circ} \mathrm{C}$ can be adjusted between $-20,0$ and $+20,0$ and for a later measurement in ${ }^{\circ} \mathrm{F}$ between -36 and +36 ．If the measuring type is changed later，the value will be rounded．

General device parameter see page 23
Alarm parameter see page 24
Safety parameter for lock／release of parameterisation see page 26

6．1．3．Device parameter for the allocation of pulse signals：IMPU

FrEq：Frequency measuring of TTL－signals，PNP／NPN－sensors．
tUrn：Rotation speed measurement（simplified adjustment option）of TTL－signals， PNP／NPN－sensors．
A flow rate can be scaled with this function，too．
CO．up：Counting input（upwards）for TTL－signals，PNP／NPN－sensors．
CO．on：Counting input（downwards）for TTL－signals，PNP／NPN－sensors．

6．1．3．1．Frequency measurement

Parameter		Menu item				Default	
IMPu	$\\| \cap P_{u}$	Freg					
Parameter		Menu item				Default	
1．tYP	ILJP	LEL	$n P n$	$P \cap P$	пRП	LEL	
rAng	－Rint	3.393	33.39	9333	9393	9393	
FlLt	FiLL	no	\square 2	－5	15	no	
		\square こロ	$\square 5 \square$	－إ口	2ロด		
		$5 \square \square$					

Parameter		Menu item			Default
End	End	-1993	to	9999	1000
OfFs	BFFS	-1939	to	9939	8000
dot.F	dot.F	\square	to	B.0]	\square
End.F	End.F	00.00	to	99.99	1000
$\underset{\mathrm{F}}{\text { OFF. }}$	DFF.F	[0.0]	to	93.99	D000
tara	LRra	-1993	to	9999	\square
Sp.	5PL.F	$\square \square$	to	$\square \quad 5$	\square
dis. 1	di 5.1	14939	to	9999	
InP. 1	\|nP. 1	14993	to	99.93	
dis. 2	d) 5.2	14939	to	9939	
InP. 2	1 nP.E	14939	to	99.99	
dis. 3	d) 5.3	14993	to	9999	
InP. 3	1 nP 3	-1993	to	93.39	
dis. 4	di 5.4	14993	to	9999	
InP. 4	1 BP 4	11993	to	99.93	
dis. 5	di 5.5	14939	to	9999	
InP. 5	1 mP 5	14939	to	93.99	

I.tYP: Pulse signal

There a three modes for the triggering of the pulse input:
ttL Active TTL-signals with approx. 0.8 V lower and approx. 2 V upper threshold.
nPn Passive switching contact, which operates the internal pull-up depending on the rate.

PnP Active sensor output. A pull-down is operated in the device.
nAM Namur output Low $<1,5 \mathrm{~mA}$, High $>2,5 \mathrm{~mA}$
rAnG: Selection of the frequency range
A selection of four frequency ranges is available:
$9.999 \quad 0 . .9,999 \mathrm{~Hz}$ (automatic software filter on $100 \mathrm{~Hz} / 5 \mathrm{~ms}$)
$99.990 . .99,99 \mathrm{~Hz}$ (automatic software filter on $500 \mathrm{~Hz} / 5 \mathrm{~ms}$)
$999.90 \ldots 999,9 \mathrm{~Hz}$
9999 0... 9999 Hz (approximate 10 kHz)

FILt: Limitation of the pulse length
For contact bounce suppression of mechanical contacts via selection of the filter frequency.
no No particular evaluation of the pulse length.
$2 \quad 2 \mathrm{~Hz}$ with pulse-duty factor $1: 1=>$ minimal pulse length 250 ms
$5 \quad 5 \mathrm{~Hz}$ with pulse-duty factor $1: 1=>$ minimal pulse length 100 ms
$10 \quad 10 \mathrm{~Hz}$ with pulse-duty factor $1: 1$ => minimal pulse length 50 ms
2020 Hz with pulse-duty factor 1:1 => minimal pulse length 25 ms
$50 \quad 50 \mathrm{~Hz}$ with pulse-duty factor $1: 1$ => minimal pulse length 10 ms
$100 \quad 100 \mathrm{~Hz}$ with pulse-duty factor $1: 1$ => minimal pulse length 5 ms
500500 Hz with pulse-duty factor 1:1 => minimal pulse length 1 ms

End / OFFS: Upper range value/lower range value
By use of these values, the desired display value can be allocated to the measuring signal.
dot.F: Comma / decimal place
Determine the decimal representation of the display value with the decimal point. It is used for the adjustment of the limit values, too.

End.F / OFF.F: Rescale the measuring input values
With this function the final value/initial value can be rescaled without application of the measuring signal.
tArA: Setting up the Tara-/Offset value
The preset value is added to the linearised value. So the characteristic line can be shifted by the selected amount.

SPC.F: Number of additional support points
To linearise nonlinear sensor values, five additional support points can be defined for the initial value and final value. Only the activated support point parameter are shown.
dIS1...dIS5: Display values for support points
Under this parameter support points are defined on a value basis.
INP1...INP5: Analog values for support points
The support points are always preset according to the selected input signal ma/V. Here, desired analog values can be freely adjusted in ascending order.

6.1.3.2. Rotation speed measurement

As more than 80% of the frequency measurement applications are referring to a rotation speed, there is a simplified adjustment mode available via type "Turn". A flow rate can be scaled with this function, too.

Parameter		Menu item	Default	
IMPu	$\\| P_{4}$	Lurn		

	mater	Menu				Defa
$1 . \mathrm{yp}$	Ityp	EEL	nPm	Prip	nRn	LEL
FLL	Filt	no	- ${ }^{\text {a }}$	- 5	-10	no
		$\square 20$	50	100	200	
		500				
ppt	PPt	000:	to	9999		0001
tme	t ine	5EL	תin	hour		$\square \mathrm{in}$
dot	dot	\square		0.000		1

I.tYP: Pulse signal

There are 3 modes for the triggering of the pulse input:
ttL Active TTL-signals with approx. 0.8 V lower and approx. 2 V upper threshold.
Passive switching contact, which operates the internal pull-up depending on the rate.

PnP Active sensor output. A pull-down is operated in the device.
nAM Namur output Low $<1,5 \mathrm{~mA}$, High $>2,5 \mathrm{~mA}$

FILt: Limitation of the pulse length
For contact bounce suppression of mechanical contacts via selection of the filter frequency.
no No particular evaluation of the pulse length
$2 \quad 2 \mathrm{~Hz}$ with pulse-duty factor $1: 1$ => minimal pulse length 250 ms
$5 \quad 5 \mathrm{~Hz}$ with pulse-duty factor factor $1: 1=>$ minimal pulse length 100 ms
$10 \quad 10 \mathrm{~Hz}$ with pulse-duty factor factor $1: 1=>$ minimal pulse length 50 ms
$20 \quad 20 \mathrm{~Hz}$ with pulse-duty factor $1: 1$ => minimal pulse length 25 ms
$50 \quad 50 \mathrm{~Hz}$ with pulse-duty factor $1: 1$ => minimal pulse length 10 ms
$100 \quad 100 \mathrm{~Hz}$ with pulse-duty factor $1: 1$ => minimal pulse length 5 ms
500500 Hz with pulse-duty factor $1: 1$ => minimal pulse length 1 ms

PPt: Pulse per rotation
With this parameter the number of pulse per rotation can be entered directly. It generally works with sprockets and their number of sprockets, incremental encoder and their resolution or glands with a number of boreholes. For simple flow meter with impeller it is only neccessary to enter the number of pulse per liter or cubic metre.
tIME: Time base
In general the time base for rotation speed is always set on "MIn", it can of course be changed into seconds or hours.
dot: Comma / decimal place
Determine the decimal representation of the display value with the decimal point. A rotation speed with up to 3 positions after decimal point can be displayed, if they are small enough.

Example: Rotation speed measurement

The rotation speed of a roller in a steel works needs to be displayed in turns/minute with one position after decimal place. The rotational speed will be recorded via a perforated disc with 18 holes, positioned in an angle of 20°. The maximum rotation speed of the roller is 60 turns/minute. Like this, adjust for example FILt = 100; PPt = 18; $\mathbf{t I M E}=\mathbf{M I n} ;$ dot $=0.0$. The difficulty with the adjustment of the filter is to calculate the pulse length precisely.

6．1．3．3．Upwards／downwards counter

Parameter		Menu item				Default	
IMPu	$\\|_{\text {I }}$	Ea．up	Eo．dn				
Parameter		Menu item				Default	
1．tYP	IL \llcorner リ	LEL	$n P n$	$P \cap P$	｜Rロ	LLL	
Co．bA	［obr	PuL5	5EL	nin		PuL5	
EdGE	EdEE	P051	neLR			Pa5！	
Pres	Pres	ロロロ！	to	9999		ロロロ	
FILt	FILL	no	$\square \quad 2$	$\square \quad 5$	$\square 15$	no	
		20	$5 \square$	－180	20］		
		$5 \square \square$					
End	End	－1993	to	9999		10ロ	
End．C	EndiL	ロロロ1	to	9999		1001	
dot	dat	$\square \square$	to	［0］		\square	

I．tYP：Pulse signal

There a three modes for the triggering of the pulse input：
ttL Active TTL－signals with approx． 0.8 V lower and approx． 2 V upper threshold．
nPn Passive switching contact，which operates the internal pull－up depending on the rate．

PnP Active sensor output．A pull－down is operated in the device．
nAM Namur output Low $<1,5 \mathrm{~mA}$ ，High $>2,5 \mathrm{~mA}$

Co.bA: Counter base
As standard the device records incoming pulses during counter operation. However the counter basis can also be used as system time in seconds or minutes. In doing so the pulse input turns into gate time, it counts at wing PoSI (HIGH-signal) and stands at LOW. The logic is contrary at wing nEGA.

EdGE: Counting start / counting end (wing)
The active wing declares when the counting takes place. The pulse recording PuLS is choosen as counter basis, via this it will be declared if the internal counter will be increased by the positive wing PoSI or the negative wing nEGA. If time is taken as time basis, then the active-triggering/HIGH-triggering will be selected with PoSI and the passive triggering/LOWtriggering will be selected with nEGA. The counter reset is always statical.

PrES: Prescaler
A prescaling in the device happens via the prescaler, so even large pulse numbers like e.g. 5.000 .000 can be recorded by the device. Only the prescaled value will be included for the scaling.

FILt: Limitation of the pulse length
For contact bounce suppression of mechanical contacts via selection of the filter frequency:

no	No particular evaluation of the pulse length
$\mathbf{2}$	$\mathbf{2 H z}$ with pulse-duty factor $1: 1=>$ minimal pulse length 250 ms
$\mathbf{5}$	$\mathbf{5 H z}$ with pulse-duty factor factor $1: 1=>$ minimal pulse length 100 ms
$\mathbf{1 0}$	$\mathbf{1 0 ~ H z}$ with pulse-duty factor factor $1: 1=>$ minimal pulse length 50 ms
$\mathbf{2 0}$	$\mathbf{2 0 ~ H z}$ with pulse-duty factor $1: 1=>$ minimal pulse length 25 ms
$\mathbf{5 0}$	$\mathbf{5 0 H z}$ with pulse-duty factor $1: 1=>$ minimal pulse length 10 ms
$\mathbf{1 0 0}$	$\mathbf{1 0 0 ~ H z}$ with pulse-duty factor $\mathbf{1 : 1}=>$ minimal pulse length 5 ms
$\mathbf{5 0 0}$	$\mathbf{5 0 0 \mathrm { Hz } \text { with pulse-duty factor } 1 : 1 = >}$ minimal pulse length 1 ms

End, End.C: Display terminal value and pulse terminal value
The display value can be freely linearised via the prescaled pulse number. For this the number of desired pulses will be allocated to a display value. The zero-point cannot be prescaled. At a backwards counter End and End.C serve as start value. For the absolute counter threshold values, the adjustments of dl.HI and dl.Lo are used. By reaching them, all digits that reached this value are flashing, what equates an underflow/overflow.

General device parameter see page 23

Alarm parameter see page 24
Safety parameter for lock / release of parameterisation see page 26

6.2. General device parameter

Parameter		Menu item				Default
SEC	5EL	OD. 1	to	$\square 2 . \square$		$\square 10 \square$
glm	ULत	Di	to	- 20		
di.tı	dil	-1999	to	9999		-1999
di.Lo	dila	14939	to	9999		9939
tast	ERSt	no	EHET	RLLI		no
FLas	FLRS	no	RL-I	RL-2	RL. I2	no

SEC: Measuring time
Adjustment of basic measuring time respectively of the frequency filter for a relief of the measurand. This filter value is adjustable from $0.01 \ldots 2.00$ seconds. At pulse measurement, the value can be selected up to 0.00 , so that the identification runs on maximum speed.

GLM: Sliding averaging
Besides the measuring time, a sliding averaging of $1 . . .20$ values can be activated, too. Here, no seperate emphasis between the past values is taking place. At GLM = 1 the sliding averaging is switched off.
dl.Lo, dl.HI: Presentation of initial/end value in the display

For overflow evaluation the measuring range and the optional selected overflow (OVEr) behaviour are evaluated. In addition this range can be limited by the parameter dI.HI and dI.Lo.
tASt: Allocation (deposit) of key functions
For operating mode either a min/max-value monitoring or a limit value correction on the navigation keys can be deposited here. If the min/max memory is activated by EHtr, the measured min/max-values will be saved during operation and can be recalled via the navigation keys [\mathbf{A}] [$\mathbf{\nabla}$]. At restart of the device, all values are lost. If the limit value correction AL.LI is selected, limit values can be changed during operation, without interfere with the operating procedure. If no is adjusted, the navigation keys [\mathbf{A}] [$\boldsymbol{\nabla}$] are without any function in the operating mode.

FLAS: Display flashing at threshold value exceedance/undercut
A display flashing can be added as additional alarm function either to the first limit value (select: AL-1), to the second limit value (select: AL-2) or to both limit values (select: AL-12). With no (factory settings), no flashing is allocated.

6.3. Alarm parameter

Paramet		Menu item				Default
Al.Fu	R I, F_{u}	OFF	an	H:LI	Loli	
		-RRE	But.r	Re.H:	Rc.Lo	DFF
Al.Er	R IEr	OFF	an			OFF
Al.LI	R IL 1	-1999	to	9939		100
Al.HY	R 1 HY	DR0]	to	9999		\square
A..HI	R LH :	-1999	to	9999		200
Al.Lo	R iLa	-1999	to	9939		100
Al.oF	R loF	D000	to	5999		\square
Al.on	P ian	DODS	to	5999		\square
A2.Fu	R2.Fu	OFF	an	HILI	Lo.Li	
		-Rinu	But.r	Re.H:	Rc.Lo	DFF
A2.Er	R2.Er	OFF	an			OFF
A2.L1	R2L 1	-1993	to	9999		300
${ }_{\text {A }}^{\text {A } 2 . H}$	R2.Hy	[000	to	19999		\square
A2.H1	R2.H:	-1999	to	9393		400
A2.Lo	R2.Lo	+939	to	9939		300
A2.oF	R2.aF	800]	to	9999		\square
A2.on	R2.an	DROS	to	9939		71

A1.Fu, A2.Fu: Limit value behaviour
Change between the different working types of switching outputs by using the functional principle. If Ax.Fu = oFF was selected, the relevant switching point parameter will not be displayed.

oFF	The switching point is without function and relevant parameter will not be displayed (Default status).
On	The switching point is switched on during measuring operation and corresponding parameter (except Ax.Er and Ax.tY) will not be displayed.
HI-LI	Switch at threshold value exceedance.
Lo.LI	Switch at threshold value undercut.
rAnG	Switch within the preset range.
Out.r	Switch outside the preset range.

A1.Er, A2.Er: Alarm flashing in case of limit value errors
on Display flashes in case of limit value errors.
oFF Optical alarm not active (no flashing in case of limit value errors).

A1.L1, A2.L1: Threshold level
Here the threshold level is defined that activates/deactivates an alarm. This parameter will not be recalled if the window function is used.

A1.HY, A2.HY: Hysteresis
The hysteresis defines a difference to the limit value which defines the delay of an alarm. This parameter will not be recalled if the window function is used.

A1.HI, A2.HI: Upper limit value
A1.Lo, A2.Lo: Lower limit value
For range functions A1.FU, A2.FU = rAnG or Out.r this value defines the upper/lower limit of the window function between „-1999...9999". This parameter will not be displayed with other functional principles. The functional principle can change between switching point 1 and 2.

A1.oF, A2.oF: Dropout delay

Preset a delayed switching off of 0-5999 seconds for the limit values. The time value will not be saved permanently and is set back by restart of the device. Furthermore the alarm condition will be detected during restart, without considering the preset delay.

A1.on, A2.on: On-delay

Preset a delayed switching on of 0-5999 seconds for the limit values. The time value will not be saved permanently and is set back by restart of the device. Furthermore the alarm condition will be detected during restart, without considering the preset delay.

6.4. Safety parameter for lock/release of parameterisation

Parameter		Menu item			Defaut
Code	LodE	B00	to	9999	1234
run	run	ULDE	LDE		ULDE

CodE: Assignment of an individual numerical code (4-digit number combination, free allocatable)
With assignment of this code (0000 factory settings), all parameter will be locked for the user, if LOC was selected afterwards under menu item run. By pushing [P] in operating mode for approx 3 seconds, the message CodE appears in the display. The code needs to be entered before each parameterisation, until the programming is released with ULoC under run.
run: Activation/Deactivation of programming interlock
Select with [$\mathbf{\Delta}$] [$\mathbf{\nabla}$] between deactivated key lock ULOC (factory settings) and activated key lock LOC. The keypad is locked, if LOC was selected. To get into menu level again, [P] needs to be pushed for 3 seconds in operating mode. The now appearing CodE (factory settings 0000) needs to be entered with [\mathbf{A}] [\mathbf{V}] and [P] and releases the keypad. A faulty entry will be displayed with FAIL.
In LOC-mode the device cannot be resetted, which shall additionally secure the regular operation.

7. Reset to default values (factory settings)

To set the device into a defined inital state, there is the possibility to do a reset to the default values. Please proceed as follows:
Switch off the voltage supply of the device. Push the [P]-key and switch voltage supply on with in-position [P]-key. Push the [P]-key until „----" appears in the display. Due to the reset, default values are charged and used for further operation. The device is now reset to the delivery state.

ATTENTION!
 All application related data are lost!

8. Technical data

Housing				
Dimensions	$96 \times 48 \times 25 \mathrm{~mm}$ (WxHxD)			
	$96 \times 48 \times 38 \mathrm{~mm}(\mathrm{WxHxD})$ including plug-in terminal			
Panel cut-out	$92.0^{+0.8} \times 45.0^{+0.6} \mathrm{~mm}$			
Wall thickness	up to 3 mm			
Fixing	screw elements			
Material	PC Polycarbonate, black, UL94V-0			
Sealing material	EPDM, 65 Shore, black			
Protection class	standard IP65 (front panel), IP00 (back side)			
Weight	approx. 100 g			
Connection	plug-in terminal; wire cross-section up to $2.5 \mathrm{~mm}^{2}$			
Display				
Digit height	14 mm			
Segment colour	red (optional green, orange or blue)			
Display range	-1999 to 9999			
Limit values	optical display flashing			
Overflow	horizontal bars at the top			
Underflow	horizontal bars at the bottom			
Display time	0.1 to 10.0 seconds			
Signal	Measuring range	Measuring span	Resolution	Internal resistance
Voltage	0...10 V	$0 . .12 \mathrm{~V}$	≥ 14 bit	$\mathrm{Ri}>100 \mathrm{k} \Omega$
Voltage	$0 . .2 \mathrm{~V}$	$0 . .2 .2 \mathrm{~V}$	≥ 14 bit	$\mathrm{Ri} \geq 10 \mathrm{k} \Omega$
Voltage	$0 . .1 \mathrm{~V}$	$0 \ldots 1.1 \mathrm{~V}$	≥ 14 bit	$\mathrm{Ri} \geq 10 \mathrm{k} \Omega$
Voltage	0... 50 mV	0... 75 mV		$\mathrm{Ri} \geq 10 \mathrm{k} \Omega$
Current	$4 . . .20 \mathrm{~mA}$	$1 . . .22 \mathrm{~mA}$		$\mathrm{Ri}=\sim 125 \Omega$
Current	0... 20 mA	0... 22 mA		$\mathrm{Ri}=\sim 125 \Omega$
Pt100-3-wire	$-50 . . .200^{\circ} \mathrm{C}$	$-58 \ldots 39{ }^{\circ} \mathrm{F}$	$\begin{aligned} & 0.1^{\circ} \mathrm{C} / \\ & 0.1^{\circ} \mathrm{F} \end{aligned}$	
Pt100-3-wire	$-200 \ldots 850^{\circ} \mathrm{C}$	$-328 . .1562^{\circ} \mathrm{F}$	$1^{\circ} \mathrm{C} / 1^{\circ} \mathrm{F}$	
Pt1000-2-wire	$-200 \ldots 850^{\circ} \mathrm{C}$	$-328 \ldots 1562^{\circ} \mathrm{F}$	$1^{\circ} \mathrm{C} / 1^{\circ} \mathrm{F}$	
Thermo K	$-270 \ldots 1350^{\circ} \mathrm{C}$	$-454 \ldots 2462^{\circ} \mathrm{F}$	$1^{\circ} \mathrm{C} / 1^{\circ} \mathrm{F}$	
Thermo S	$-50 \ldots 1750^{\circ} \mathrm{C}$	$-328 \ldots 3182^{\circ} \mathrm{F}$	$1^{\circ} \mathrm{C} / 1^{\circ} \mathrm{F}$	

Signal	Measuring range	Measuring span	Resolution	Internal resistance
Thermo N	$-270 . . .1300^{\circ} \mathrm{C}$	-454...2372 ${ }^{\circ} \mathrm{F}$	$1^{\circ} \mathrm{C} / 1^{\circ} \mathrm{F}$	
Thermo J	$-170 \ldots 950^{\circ} \mathrm{C}$	$-274 . . .1742^{\circ} \mathrm{F}$	$1^{\circ} \mathrm{C} / 1^{\circ} \mathrm{F}$	
Thermo T	$-270 \ldots 400^{\circ} \mathrm{C}$	$-454 \ldots 752^{\circ} \mathrm{F}$	$1^{\circ} \mathrm{C} / 1^{\circ} \mathrm{F}$	
Thermo R	$-50 . .1768^{\circ} \mathrm{C}$	$-58 \ldots 3214^{\circ} \mathrm{F}$	$1^{\circ} \mathrm{C} / 1^{\circ} \mathrm{F}$	
Thermo B	$80 . .1820^{\circ} \mathrm{C}$	176.. $3308^{\circ} \mathrm{F}$	$1^{\circ} \mathrm{C} / 1^{\circ} \mathrm{F}$	
Thermo E	$-270 . . .1000^{\circ} \mathrm{C}$	-454...1832 ${ }^{\circ} \mathrm{F}$	$1^{\circ} \mathrm{C} / 1^{\circ} \mathrm{F}$	
Thermo L	$-200 . . .900^{\circ} \mathrm{C}$	-328...1652 ${ }^{\circ} \mathrm{F}$	$1^{\circ} \mathrm{C} / 1^{\circ} \mathrm{F}$	
Frequency	$0 \ldots 10 \mathrm{kHz}$	$0 \ldots 10 \mathrm{kHz}$	$0,001 \mathrm{~Hz}$	
NPN	$0 . . .3 \mathrm{kHz}$	$0 . . .3$ kHz	$0,001 \mathrm{~Hz}$	
PNP	$0 . .1 \mathrm{kHz}$	$0 . . .1$ kHz	0,001 Hz	
Rotation speed	0... 9999 1/min	0... 9999 1/min	0,001 1/min	
Counter	0... 9999 (Prescaler up to 1000)			
Pulse input	TTL	HTL/PNP	NPN	Namur
	$\begin{aligned} & \text { Low }<2 \mathrm{~V}, \\ & \text { High }>3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { Low <6 V, } \\ & \text { High >8 V } \end{aligned}$	Low <0.8 V, High via resistance	$\begin{aligned} & \text { Low }<1.5 \mathrm{~mA} \\ & \text { High }>2.5 \mathrm{~mA} \end{aligned}$
Reste-input	active $<0.8 \mathrm{~V}$			
Measuring error				
Standard	0.2\% of measuring range ± 1 digit			
Pt100/Pt1000	0.5% of measuring range ± 1 digit			
Thermocouple	0.3% of measuring range ± 1 digit			
Accuracy				
Reference junction	$\pm 1^{\circ} \mathrm{C}$			
Drift of temperature	$100 \mathrm{ppm} / \mathrm{K}$			
Measuring time	$0.01 \ldots 2.0$ seconds			
Sampling rate	approx. 1/s at thermocouple, approx. 100/s at standard signals			
Measuring principle	U/F-conversion			
Resolution	approx. 14 bit at 1s measuring time			

Output	Configuration interface for PC-software PM-TOOL with USB- dongle
Interface	$100-240 \mathrm{VAC} 50 / 60 \mathrm{~Hz}, \mathrm{DC} \pm 10 \%$ $230 \mathrm{VAC} 50 / 60 \mathrm{~Hz} \leq 3 \mathrm{VA}$ 24 VDC galvanic isolated $\leq 1 \mathrm{VA}$
Power supply	EEPROM
Memory	≥ 100 years at $25^{\circ} \mathrm{C}$
Data life	
Ambient condition	$-20^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
Working temperature	$-30^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Storing temperature	relative humidity $0-85 \%$ on years average without dew
Weathering resistance	EN 61326 EMV CE-identification Safety standard
Conformity according to directive 2014/30/EU	

9. Safety advices

Please read the following safety advices and the assembly chapter 2 before installation and keep it for future reference.

Proper use

The M1-1U-device is designed for the evaluation and display of sensor signals.

Danger! Careless use or improper operation can result in personal injury and/or damage the equipment.

Control of the device

The panel meters are checked before dispatch and sent out in perfect condition. Should there be any visible damage, we recommend close examination of the packaging. Please inform the supplier immediately of any damage.

Installation

The M1-1U-device must be installed by a suitably qualified specialist (e.g. with a qualification in industrial electronics).

Notes on installation

- There must be no magnetic or electric fields in the vicinity of the device, e.g. due to transformers, mobile phones or electrostatic discharge.
- The fuse rating of the supply voltage should not exceed a value of 0.5A N.B. fuse!
- Do not install inductive consumers (relays, solenoid valves etc.) near the device and suppress any interference with the aid of RC spark extinguishing combinations or freewheeling diodes.
- Keep input, output and supply lines separate from each other and do not lay them parallel with each other. Position "go" and "return lines" next to one another. Where possible use twisted pair. So, the best measuring results can be received.
- Screen off and twist sensor lines. Do not lay current-carrying lines in the vicinity. Connect the screening on one side on a suitable potential equaliser (normally signal ground).
- The device is not suitable for installation in areas where there is a risk of explosion.
- Any electrical connection deviating from the connection diagram can endanger human life and/or can destroy the equipment.
- The terminal area of the devices is part of the service. Here electrostatic discharge needs to be avoided. Attention! High voltages can cause dangerous body currents.
- Galvanically isolated potentials within one complex need to be placed on an appropriate point (normally earth or machines ground). So, a lower disturbance sensibility against impacted energy can be reached and dangerous potentials, that can occur on long lines or due to faulty wiring, can be avoided.

10. Error elimination

	Error description	Measures
1.	The unit permanently indicates overflow. - The input has a very high measurement, check the measuring circuit. The display range of 999 respectively the preset measuring range was exceeded, control the supporting points respectively the selected input type and signal range. Not laf the activated supporting points are parameterised. Check if the relevant parameters are adjusted correctly.	
2.	The unit permanently shows underflow.	- The input has a very low measurement, check the measuring circuit. mene The display range of -1999 respectively the preset measuring range was undercut, control the adjustments.
3.	The device shows Lbr in the 7-segment parameterised. Check if the relevant parameters are adjusted correctly.	
display.	- Check if the selected input type is correct. Only temperature measurements and 4...20 mA show these kind of error indication. Check the wiring regarding a contact and correct connection.	
4.	The device shows HELP in the 7- segment display.	- The device has detected an error in the configuration memory, operate a reset to default values and configurate the device according to your application.
5.	Parameter for the parameterisation of the input are not available.	- The programming interlock is activated. - Enter correct code.
6.	The device shows Err1 in the 7- segment display.	- Contact the manufacturer if errors of this kind occur.
7.	The device does not react as expected.	- If you are not sure, if the device has been parameterised before, restore the delivery state as described in chapter 7.
8.	There are higher constant errors of indication at thermocouple measurement.	- Remove strong heat or cold sources from the direct surroundings of the device. Reduce the contact rating of the relay switching points onto preferably under 10 mA, as higher switching current lead to an increased local warming and thus to a massive error at the reference junction measurement.
If the variations during operation are permanent and		
constant, the reference junction measurement can be		
corrected via the offset.		

