User manual M1

AC voltage / AC current true TRMS

- 0-100 VAC, 0-1 AAC
- 0-300 VAC, 0-5 AAC

Housing size 96x24 mm (BxH)

Housing size72x36 mm (BxH)

Technical features:

- red display of -1999... 9999 digits (optional: green, orange or blue)
- minimal installation depth: $25 \mathrm{~mm}, 27 \mathrm{~mm}, 60 \mathrm{~mm}$ or 71 mm without plug-in terminal
- adjustment via factory default or directly on the sensor signal
- min/max-memory
- 10 adjustable supporting points
- display flashing at threshold exceedance / undershooting
- tara function
- programming interlock via access code
- protection class IP65 at the front
- plug-in terminal
- pc-based configuration software PM-TOOL with CD and USB-adapter

Identification - AC voltage / AC current

STANDARD TYPES

Housing size:
$96 \times 24 \times 76 \mathrm{~mm}$ (incl. plug-in terminal)

Housing size:
$72 \times 36 \times 100 \mathrm{~mm}$ (incl. plug-in terminal)

ORDERING NUMBER
M1-3VR4B.0004.570xD
M1-3VR4B.0004.770xD
M1-3VR4B.0H04.570xD
M1-6VR4B.0004.570xD
M1-6VR4B.0004.770xD
M1-6VR4B.0H04.570xD

Options - breakdown of order code:

Please state physical unit by order, e.g. m/min.

Content

1. Brief description 1
2. Assembly 1
3. Electrical connection and connection examples 2
4. Function description and operation 4
4.1. Programming software PM-TOOL 4
5. Setting up the device 5
5.1. Switching on 5
5.2. Standard parameterisation (flat operation level) 5Value assignment for control of the signal input
5.3. Programming interlock RUM 6Activation/Deactivation of the programming interlock or change into extendedparameterisation
5.4. Extended parameterisation 7
Superior device functions like e.g.:

- rescaling of the input signals, EMDR, OFFR 7
- parameterisation of a TARA-function, TRRR 7
- zero point slowdown of the input signal, ZERO 7
- allocation of functions onto the navigation keys, TRST 8
- adjustment of limit values for optical alarm, Li-1/2 8
- safety parameter for locking of the programming, CODE 10
- input of supporting points for the linearisation of the input signals, SPCT 10

6. Reset to default values 11Reset of the parameter onto delivery condition
7. Alarms / Switching points 12Functional principle of the optical switching points
8. Technical data 13
9. Safety advices 15
10. Error elimination 16

1. Brief description

The panel meter instrument M1-x4 is a 4-digit for AC current / AC voltage signals (TRMS) and a visual threshold value monitoring via the display. The configuration happens via three keys at the front or by the optional PC software PM-TOOL. The integrated programming interlock prevents unrequested changes of parameters and can be unlocked again with an individual code. The electrical connection is done via plug-in terminals on the back side.
Selectable functions like e.g. the recall of the min/max-value, a zeropoint slowdown, a direct threshold value regulation during operation mode and additional measuring setpoints for linearisation of the input signal, complete the modern device concept.

2. Assembly

Please read the Safety advices on page 16 before installation and keep this user manual for future reference.
The example given below shows a device in housing size $72 \times 36 \mathrm{~mm}$.

1. After removing the fixing elements, insert the device.
2. Check the seal to make sure it fits securely.
3. Click the fixing elements back into place and tighten the clamping screws by hand. Then use a screwdriver to tighten them another half a turn.

3. Electrical connection

Typ M1-3VR4B.0x04.570xD ($96 \times 24 \mathrm{~mm}$)
Typ M1-6VR4B.0x04.570xD ($72 \times 36 \mathrm{~mm}$)

Only for type: M1-6 (housing size 72x36 mm)

Option:

4. Function description and operation

Operation

The operation is divided into two different levels.

Menu Level

Here it is possible to navigate between the individual menu items.

Parameterization level:

The parameters stored in the menu item can be parameterized here.
Functions that can be adjusted or changed are always indicated with a flashing of the display. Adjustments made at the parameterization level should be always confirmed by pressing the [P] key to save them. However, the display automatically saves all adjustments and then switches to operation mode if no further keys are pressed within 10 seconds.

| Level | Button | Description |
| :---: | :---: | :--- | :--- |
| Menu level | P | Change to parameterization level with the relevant parameters |
| | $\boldsymbol{\nabla}$ | For navigation at the menu level |
| | P | To confirm the changes made at the parameterization level |
| | $\boldsymbol{\nabla}$ | To change the value or setting |

Example:

4.1. Programming via configuration software PM-TOOL-MUSB4:

You receive the software on CD incl. an USB-cable with a device adapter. The connection is done via a 4-pole micromatch connector plug on the back and the PC is connected via an USB connector plug.

System requirements: PC with USB interface

Software: Windows XP, Windows Vista

With this tool the device configuration can be created, skipped and saved on the PC. Via the easy to handle program surface the parameter can be changed, whereat the mode of operation and the possible selection options can be preset via the program.

CAUTION!

During parameterisation with connected measuring signal, make sure that the measuring signal has no mass supply to the programming plug. The programming adapter is galvanic not isolated and directly connected with the PC. Via polarity of the input signal, a current can discharge via the adapter and destroy the device as well as other connected components!

5. Setting up the device

5.1. Switching on

Once the installation is complete, you can start the device by applying the current loop. Check beforehand once again that all the electrical connections are correct.

Starting sequence

For 1 second during the switching-on process, the segment test (8 8 8 8) is displayed, followed by an indication of the software type and, after that, also for 1 second, the software version. After the start-up sequence, the device switches to operation/display mode.

5.2. Standard parameterization:

To be able to parameterize the display, press the [P] key in operating mode for 1 second. The display then changes to the menu level with the first menu item TYPE.

| Menu level | Parameterization level |
| :--- | :--- | :--- |
| Sefault: SEnS | |

Setting the decimal point, dot:

Default: 0

The decimal point on the display can be moved with [$\mathbf{\Delta}][\mathbf{V}]$ and confirmed with $[\mathrm{P}]$. The display then switches back to the menu level again.

Setting the display time, SEC:

Default: 01.0

5.4. Extended parameterization

By pressing the [\mathbf{A}] \& [$\mathbf{\nabla}$] keys during standard parameterization for one second, the display switches to the extended parameterization mode. Operation is the same as in standard parameterization.

Menu level	Parameterization level
	Rescaling the measuring input values, EndA: With the aid of this function, one can rescale the input value of e.g. $19,5 \mathrm{~mA}$ (works setting) without applying a measuring signal. If sensor calibration has been selected, these parameters are not available.
$\begin{aligned} & \square F F R \\ & \text { 人 } \nabla \Delta \mid \end{aligned}$	Rescaling the measuring input values, OFFA: With the aid of this function, one can rescale the input value of e.g. 3,5 mA (works setting) without applying a measuring signal. If sensor calibration has been selected, these parameters are not available.
LRr	Setting the tare/offset value, tArA: Default: 0 The given value is added to the linerarized value. In this way, the characteristic line can be shifted by the selected amount.
$\begin{aligned} & \text { IET } \\ & \text { 人 } \boldsymbol{\nabla} \mid \end{aligned}$	Zero point slowdown, ZErO: Default: 0 $\square \square \square \underset{\square}{\square}$ With zero point slowdown, a value range around zero can be preselected at which the display shows zero. If, for example, a 10 is set, the display would show a zero in the range from -10 to +10 and continue below it with -11 and above it with +11 .

Flashing of display, FLAS:

Default: no

Here, the flashing of the display can be added as an extra alarm function, either to the first limit value (select: $\mathrm{Ll}-1$), the second limit value (select: LI-2) or to both limit values (select: Ll-12). With No (works setting), no flashing is assigned at all.

Limit values, LI-1:

Default: 0200

Menu level Parameterization level

Function if display falls below／exceeds limit value，FU－1：
Default：hi9h

$$
\begin{aligned}
& \text { Fい-l 回 HI SH } \\
& \text { To indicate if the value falls below the lower limit value, Louu can be selected } \\
& \text { (LOW = lower limit value) and if it goes above the upper limit value, high can be } \\
& \text { selected (HIGH = upper limit value). LOW corresponds to the quiescent current } \\
& \text { principle and HIGH to the operating current principle. }
\end{aligned}
$$

Limit value，LI－2：
Default： 0300

For both limit values，two different values can be parameterized．With this，the parameters for each limit value are called up one after the other．

Hysteresis for limit values，HY－2：
Default： 0000

For both limit values，a hysteresis function exists that reacts according to the functional principle（operating current／quiescent current）．

Function if display falls below／exceeds limit value，FU－2：
Default：hi9h

To indicate if the value falls below the lower limit value，Louu can be selected （LOW＝lower limit value）and if it goes above the upper limit value，high can be selected（HIGH＝upper limit value）．LOW corresponds to the quiescent current principle and HIGH to the operating current principle．

6. Reset to default values

To return the unit to a defined basic state, a reset can be carried out to the default values.
The following procedure should be used:

- Switch off the power supply
- Press [P]-button
- Switch on voltage supply and press [P]-button until ..---" is shown in the display.

With reset, the default values of the program table are loaded and used for subsequent operation. This sets the unit back into the state in which it was supplied.

Caution! All application-related data are lost.

7. Functional principle of the switching points

Limit value exceedance "High"

The switching point S1-S2 is "off" below the threshold and "on" on reaching the threshold.

Limit value undercut "low"

The switching point S1-S2 is "on" below the threshold and switched "off" on reaching the threshold.

Alarms / optical switching point display

An activated switching point can be optically indicated by flashing of the 7-segment display.

Functional principle of the alarms

Alarm	Deactivated, display value
Threshold	Threshold value / limit value for switch over
Hysteresis	Width of the window between the thresholds
Operating principle	Limit value exceedance / limit value undercut

8. Technical data

Gehäuse			
Dimensions	$96 \times 24 \times 57 \mathrm{~mm}(\mathrm{WxHxD})$, $\mathrm{D}=76 \mathrm{~mm}$ including plug-in terminal		
	$72 \times 36 \times 71 \mathrm{~mm}(\mathrm{WxHxD})$ $D=100 \mathrm{~mm}$ including plug-in terminal		
Panel cut-out	$92.0^{+0.8} \times 22.2^{+0.3} \mathrm{~mm}$ (housing size $96 \times 24 \mathrm{~mm}$)		
	$68.0^{+0.7} \times 32.0^{+0.6} \mathrm{~mm}$ (housing size $72 \times 36 \mathrm{~mm}$)		
Insulation thickness	up to 3 mm		
Fixing	snap-in screw element		
Material	PC Polycarbonate, black, UL94V-0		
Sealing material	EPDM, 65 Shore, black		
Protection class	standard IP65 (front), IP00 (back side)		
Weight	aaprox. $100 \mathrm{~g}(96 \times 24 \mathrm{~mm})$ approx. $200 \mathrm{~g}(72 \times 36 \mathrm{~mm})$		
Connection	plug-in terminal; wire cross section up to $2.5 \mathrm{~mm}^{2}$		
Display			
Digit height	14 mm ($96 \times 24 \mathrm{~mm}, 72 \times 36 \mathrm{~mm}$)		
Segment colour	red (optional green, orange or blue)		
Display range	-1999 to 9999		
Setpoints	optical display flashing		
Overflow	horizontal bars at the top		
Underflow	horizontal bars at the bottom		
Display time	0.1 to 10.0 seconds		
Input	Ri	Measuring error	Digit
0... 1 AAC	$\sim 0.2 \Omega$	0.5 \% of measuring range	± 1
0...5 AAC	$\sim 0.05 \Omega$	0.5% of measuring range	± 1
0... 100 VAC	$\sim 330 \mathrm{k} \Omega$	0.5 \% of measuring range	± 1
0... 300 VAC	$\sim 1 \mathrm{M} \Omega$	0.5 \% of measuring range	± 1
Switching outputs	Switching contact		
2 relays with changeover contact	contact voltage $30 \mathrm{VDC} / \mathrm{AC}$, max. 2 A resistive load operating life $<30 \mathrm{mV} /<10 \mathrm{~mA}$ - minimum $2.5 \times 10^{\wedge} 6$ 30 VDC / 1 A - minimum $5 \times 10^{\wedge} 5$ 30 VDC / 2 A - minimum $1 \times 10^{\wedge} 5$		

Accuracy	
Temperature drift	$100 \mathrm{ppm} / \mathrm{K}$
Measuring time	0.1... 10.0 seconds
Measuring principle	U/F-conversion
Resolution	approx. 18 bit at 1s measuring time
Power pack	230 VAC $\pm 10 \%$ max. 3 VA 24 VDC ± 10 \% max. 1 VA
Memory	EEPROM
Data life	≥ 100 years at $25^{\circ} \mathrm{C}$
Ambient conditions	
Working temperature	$0^{\circ} \mathrm{C} \ldots 60^{\circ} \mathrm{C}$
Storing temperature	$-20^{\circ} \mathrm{C} \ldots 80^{\circ} \mathrm{C}$
Weathering resistance	relative humidity $0-80 \%$ on years average without dew
EMV	EN 61326
CE-sign	Conformity to directive 2014/30/EU
Safety standard	According to low voltage directive 2014/35/EU EN 61010; EN 60664-1

9. Safety advices

Please read the following safety advices and the assembly chapter 2 before installation and keep it for future reference.

Proper use

The M1-x1-device is designed for the evaluation and display of sensor signals.

Danger! Careless use or improper operation can result in personal injury and/or cause damage to the equipment.

Control of the device

The panel meters are checked before dispatch and sent out in perfect condition. Should there be any visible damage, we recommend close examination of the packaging. Please inform the supplier immediately of any damage.

Installation

The M1-x1-device must be installed by a suitably qualified specialist (e.g. with a qualification in industrial electronics).

Notes on installation

- There must be no magnetic or electric fields in the vicinity of the device, e.g. due to transformers, mobile phones or electrostatic discharge.
- The fuse rating of the supply voltage should not exceed a value of 0.5A N.B. fuse!
- Do not install inductive consumers (relays, solenoid valves etc.) near the device and suppress any interference with the aid of RC spark extinguishing combinations or freewheeling diodes.
- Keep input, output and supply lines separate from each other and do not lay them parallel with each other. Position "go" and "return lines" next to one another. Where possible use twisted pair. So, the best measuring results can be received.
- Screen off and twist sensor lines. Do not lay current-carrying lines in the vicinity. Connect the screening on one side on a suitable potential equaliser (normally signal ground).
- The device is not suitable for installation in areas where there is a risk of explosion.
- Any electrical connection deviating from the connection diagram can endanger human life and/or can destroy the equipment.
- The terminal area of the devices is part of the service. Here electrostatic discharge needs to be avoided. Attention! High voltages can cause dangerous body currents.
- Galvanic isolated potentials within one complex need to be placed on an appropriate point (normally earth or machines ground). So, a lower disturbance sensibility against impacted energy can be reached and dangerous potentials, that can occur on long lines or due to faulty wiring, can be avoided.

10. Error elimination

	Error description	Measures
1.	The unit permanently indicates overflow. \square	- The input has a very high measurement, check the measuring circuit. - With a selected input with a low voltage signal, it is only connected on one side or the input is open. - Not all of the activated supporting points are parameterised. Check if the relevant parameters are adjusted correctly.
2.	The unit permanently shows underflow.	- The input has a very low measurement, check the measuring circuit . - With a selected input with a low voltage signal, it is only connected on one side or the input is open. - Not all of the activated supporting points are parameterised. Check if the relevant parameters are adjusted correctly.
3.	The word HELP lights up in the 7-segment display.	- The unit has found an error in the configuration memory. Perform a reset to the default values and reconfigure the unit according to your application.
4.	Program numbers for parameterising of the input are not accessible.	- Programming lock is activated - Enter correct code
5.	ERRIlights up in the 7-segment display.	- Please contact the manufacturer if errors of this kind occur.
6.	The device does not react as expected.	- If you are not sure if the device has been parameterised before, then follow the steps as written in chapter 6 and set it back to its delivery status.

