## User manual M2

## Profibus DP



## Technical features:

-6-digit red display (optional: green, orange, blue)

- minimal installation depth: 70 mm excluding plug-in terminal
- programming interlock via access code
- protection class IP65 (front side)
- plug-in terminal


## Identification

| STANDARD TYPES | ORDER NUMBER |
| :--- | :---: |
| Profibus DP | M2-1BR6B.9000.570CD |
| Housing size: $96 \times 48 \mathrm{~mm}$ | M2-1BR6B.9000.670CD |

## Options - breakdown order code:

|  | M | 2- | 1 | B | R | 6 | B. |  | 0 | 0 | . 6 | 7 | 0 | C | D |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Standard type M-Line |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Dimension <br> D physical unit |
| Installation depth 89 mm incl. plug-in terminal |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\qquad$ |
| Housing size B96xH48xD70 mm |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Switching points $\square$ no switching points |
| Display type binary |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Protection class <br> 1 without keypad, |
| Display colour <br> Blue <br> Green |  |  |  |  |  |  |  |  |  |  |  |  |  |  | operation on the back <br> 7 IP65 / plug-in terminal |
| Red <br> Yellow |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{array}{\|l\|l\|l\|}  & \text { Supply voltage } \\ \hline 4 & 115 \text { VAC } \\ \hline 5 & 230 \text { VAC } \\ \hline \end{array}$ |
| Number of digits 6-digit |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $610-30 \mathrm{VDC}$ galv. insulated |
| Digit height 14 mm |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Measuring input $\square$ none |
| Digital input <br> Profibus |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Analog output $\square$ none |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Sensor supply none |

## Contents

1. Assembly 2
2. Electrical connection 3
3. Function and operation description 4
4. Setting up the device 5
4.1. Switching on 5
4.2. Parameterisation 5
5. Reset to factory settings 6
6. Operating modes 7
6.1. Operating mode $1 \quad 7$
6.2. Operating mode $2 \quad 7$
6.3. Operating mode 3 8
6.4. Operating mode 4 8
6.5. Operating mode 5 9
6.6. Explanations to panel parameters 10
6.7. Explanations to the position after decimal point 10
6.8. Explanations to the mode 11
6.8.1 Modus $0 \quad 11$
6.8.1 Modus 1 , 11
7. Error indications 12
8. Technical data 13
9. Safety advice 14

## 1. Assembly

Please read the Safety advice on page 13 before installation and keep this user manual for future reference.


1. After removing the fixing elements, insert the device.
2. Check the seal to make sure it fits securely.
3. Click the fixing elements back into place and tighten the clamping screws by hand. Then use a screwdriver to tighten them another half a turn.

## CAUTION! The torque should not exceed 0.1 Nm!

The dimension symbols can be exchanged before installation via a channel on the side!

## 2. Electrical connection

Type M2-1BR5B.9000.570CD supply of 230 VAC
Type M2-1BR5B.9000.670CD supply of $10-30$ VDC


## Connection example:

Triggering

## Display 1

Display $n$


Connection of several displays on one Profibus Bus-line.

Profibus arranges the devices in sequence. An allocation in form of a star is not acceptable! Both ends of the data line require a termination. One in the triggering included termination needs to be activated. The maximum allowable length of the data line depends on the baudrate an is 1000 m .

For simplification of the electrical connection, the terminals are carried out doubly. At the last device of tha bus-line, the termination can be switched onto the bus-line with two bridges.

## 3. Function and operation description

## Operation

The device is triggered via Profibus and shows numerics and signs in a 6-digit 7-segment display. Thereby the communication can be triggered via a Bus master. The display recognizes automatically the used Baudrate with a Bus master and needs as single information the Profibus address, which can be parameterised via the keypad of the display.

## Parameterisation level:

Parameter deposited in the menu item can here be parameterised.
Functions, that can be changed or adjusted, are always signalised by a flashing of the display. Settings that are made in the parameterisation level are confirmed with [P] and thus safed. By pressing the [O]-key (zero-key) it leads to a break-off of the value input and to a change into the menu level.
All adjustments are safed automatically by the device and it changes into operating mode, if no further key operation is done within the next 10 seconds.

Operation and display elements:

| Level | Key | Description |
| :---: | :---: | :---: |
| Menu level | P | Change to parameterisation level and deposited values. |
|  | $\triangle \nabla$ | Keys for up and down navigation in the menu level. |
|  | 0 | Change into operation mode. |
| Parameterisation level | P | To confirm the changes made at the parameterization level. |
|  | $\triangle \nabla$ | Adjustment of the value / the setting. |
|  | 0 | Change into menu level or break-off in value input. |

## 4. Setting up the device

### 4.1. Switching-on

Once the installation is complete, you can start the device by applying the voltage supply. Before, check once again that all electrical connections are correct.

## Starting sequence

For 1 second during the switching-on process, the segment test ( $\begin{aligned} & 8 \\ & 8\end{aligned}$ 8 8 8) is displayed followed by an indication of the software type and, after that, also for 1 second the software version. After the starting sequence, the device switches to operation/display mode.
4.2. Standard parameterisation: (Flat operation level)

To parameterize the display, press the [P] key in operating mode for 1 second. The display then changes to the menu level with the first menu item TYPE.
Menu level

| Menu level | Parameterisation level |
| :---: | :---: |
| $\begin{aligned} & \square R, L \square \\ & \|\nabla \Delta\| \end{aligned}$ | Administrator code / Master code (4-digit number-combination free available), 8.co: Default: 1234 <br> With this code all parameters can be re-activated, after LOC has been activated under menu item RUM before. By pushing $[\mathrm{P}]$ in operation mode for approx. 3 seconds, CODE occurs in the display and enables the user to reach all parameters by entering the R.CO. While leaving the parameterisation under RUM, the parameterisation can be activated permanently by selection of ULC. So that at a renew pushing of $[P]$ in operating mode, no new entering of the code needs to be done. |
|  | Activiation and/or deactivation of the programming interlock or closing-off of the parameterisation, RUM: <br> Default: ULL <br> With the navigation keys [ $\mathbf{\Delta}$ ] [ $\mathbf{V}$ ], one can choose between the deactivated key lock ULOC (works setting) and the activated key lock LOC. Confirm the selection with [P]. After this, the display confirms the settings with "- - - -", and automatically switches to operating mode. If LOC was selected, the keyboard is locked. To get back into the menu level, press [P] for 3 seconds in operating mode. Now enter the CODE (works setting 1234 ) that appears using [ $\mathbf{A}$ ] [ $\mathbf{V}$ ] plus $[P]$ to unlock the keyboard. FAIL appears if the input is wrong. By pressing $[P]$ in operation mode for approx. 3 seconds, the first menu group RDR appears in the display and thus confirms the change into parameterisation. It stays activated as long as ULOC is entered in menu group RUM, thus the display is set back in standard parameterisation again. |

## 5. Reset to factory settings (default values)

To return the unit to a defined basic state, a reset can be carried out to the default values.
The following procedure should be used:

- Switch off the power supply
- Press button [P]
- Switch on voltage supply and press [P]-button until .. . . - -" is shown in the display.

With reset, the default values of the program table are loaded and used for subsequent operation. This puts the unit back to the state in which it was supplied.

## Caution! All application-related data are lost.

## 6. Operating modes

The Profibus displays support 5 different operating modes, as given below.

### 6.1. Operating mode 1

Display of 16 bit signed integer values (-32768 .. 32767).
Configuration values

| Byte-No. | Characteristic | Description | Function |
| :--- | :--- | :--- | :--- |
| 0 | $0 \times 21$ | 2 Bytes output data | Display value „signed integer" |

## Output data

| Byte-No. | Function |
| :--- | :--- |
| $\mathbf{0}$ | Display value High-Byte |
| $\mathbf{1}$ | Display value Low-Byte |

### 6.2. Operating mode 2

Display value of 16 bit signed integer values (-32768...32767), with brightness control, flashing and position after decimal point.

Configuration data

| Byte-No. | Characteristic | Description | Function |
| :--- | :--- | :--- | :--- |
| $\mathbf{0}$ | $\mathbf{0 x 2 1}$ | 2 Bytes output data | Panel parameter (see 6.6.) |
| $\mathbf{1}$ | $\mathbf{0 x 2 0}$ | 1 Byte output data | Position after decimal point (see 6.7) |
| $\mathbf{2}$ | $\mathbf{0 x 2 1}$ | 2 Bytes output data | Position after decimal point „signed integer" |

Output data

| Byte-No. | Function |
| :--- | :--- |
| $\mathbf{0 - 1}$ | Panel parameter (see explanations under 6.6.) |
| $\mathbf{2}$ | Position after decimal point (see explanations under 6.7) |
| $\mathbf{3}$ | Display value High-Byte |
| $\mathbf{4}$ | Display value Low-Byte |

### 6.3. Operating mode 3

Display value of 32 bit signed integer values (-4.294.967.296...4.294.967.295).
Configuration data

| Byte-No. | Characteristics | Description | Function |
| :--- | :--- | :--- | :--- |
| $\mathbf{0}$ | $0 \times 23$ | 4 Bytes output data | Display value „signed long integer" |

Output data

| Byte-No. | Function |
| :--- | :--- |
| $\mathbf{0}$ | Display value High-Word, High-Byte |
| $\mathbf{1}$ | Display value High-Word, Low-Byte |
| $\mathbf{2}$ | Display value Low-Word, High-Byte |
| $\mathbf{3}$ | Display value Low-Word, Low-Byte |

### 6.4. Operating mode 4

Display value of 16 bit signed integer value ( $-32768 \ldots 32767$ ), with brightness control, flashing and position after decimal point.

## Configuration data

| Byte-No. | Characteristic | Description | Function |
| :--- | :--- | :--- | :--- |
| $\mathbf{0}$ | $\mathbf{0 x 2 1}$ | 2 Bytes output data | Panel parameter (see explanations 6.6) |
| $\mathbf{1}$ | $\mathbf{0 x 2 0}$ | 1 Byte output data | Position after decimal point (see 6.7) |
| $\mathbf{4}$ | $\mathbf{0 x 2 3}$ | 4 Bytes output data | Display value „signed long integer" |

Output data

| Byte-No. | Function |
| :--- | :--- |
| $\mathbf{0 - 1}$ | Panel parameter (see explanations under 6.6) |
| $\mathbf{2}$ | Position after decimal point (see explanations under 6.7) |
| $\mathbf{3}$ | Display value High-Word, High-Byte |
| $\mathbf{4}$ | Display value High-Word, Low-Byte |
| $\mathbf{5}$ | Display value Low-Word, High-Byte |
| $\mathbf{6}$ | Display value Low-Word, Low-Byte |

### 6.5. Operating mode 5

Direct display triggering with brightness control.

## Configuration data

| Byte-No. | Characteristics | Description | Function |
| :--- | :--- | :--- | :--- |
| $\mathbf{0}$ | $0 \times 21$ | 2 Bytes output data | Panel parameter (see explanations 6.6) |
| $\mathbf{2}$ | $0 \times 21$ | 2 Bytes output data | Mode (see explanations 6.8) |
| $\mathbf{4}$ | $0 \times 27$ | 8 Bytes output data | Direct display |

Output data

| Byte-No. | Function |
| :--- | :--- |
| $\mathbf{0 - 1}$ | Panel parameter (see explanations 6.6) |
| $\mathbf{2 - 3}$ | Mode (see explanations 6.8) |
| $\mathbf{4}$ | 1. Digit (display digit with the lowest value) |
| $\mathbf{5}$ | 2. Digit |
| $\mathbf{6}$ | 3. Digit |
| $\mathbf{7}$ | 4. Digit |
| $\mathbf{8}$ | 5. Digit |
| $\mathbf{9}$ | 6. Digit |
| $\mathbf{1 0}$ | 7. Digit |
| $\mathbf{1 1}$ | 8. Digit |

With 6-digit displays, the 1st and 2nd digit may not be triggered (and so on). But all 8 digits always need to be assigned!

### 6.6. Explanations to panel parameters

| Byte-No. | Function |
| :--- | :--- |
| $\mathbf{0 - 1 *}$ | 00 equates $100 \%$ brightness <br> 01 equates $75 \%$ brightness <br> 10 equates $50 \%$ brightness <br> 11 equates $25 \%$ brightness |
| $\mathbf{2 - 7}$ | Reserved |
| $\mathbf{8}$ | Flashing at 1.digit (display digit with the lowest value) |
| $\mathbf{9}$ | Flashing at 2.digit |
| $\mathbf{1 0}$ | Flashing at 3.digit |
| $\mathbf{1 1}$ | Flashing at 4.digit |
| $\mathbf{1 2}$ | Flashing at 5.digit |
| $\mathbf{1 3}$ | Flashing at 6.digit |
| $\mathbf{1 4}$ | Flashing at 7.digit |
| $\mathbf{1 5}$ | Flashing at 8.digt |

*Brightness control not availabe for outdoor displays!

### 6.7. Explanations to position after decimal point

| Byte-No. | Function |
| :--- | :--- |
| $\mathbf{0 - 2}$ | 000 no position after decimal point |
|  | 001 |
| 1 position after decimal point |  |
|  | 010 |
| 2 positions after decimal point |  |
|  | 011 |
| 3 positions after decimal point |  |
|  | 100 |
| 4 positions after decimal point |  |
|  | 101 |
| $110 \ldots 6$ positions after decimal point |  |
|  | $111 \ldots .7$ positions after decimal point |
|  | Reserved |
| $\mathbf{3 - 6}$ | $\mathbf{0}$ |
| $\mathbf{7}$ | Display |
|  | $\mathbf{1}$ |

### 6.8. Explanations of the mode

| Byte-No. | Function |
| :--- | :--- |
| $\mathbf{0 - 6}$ | 00000000 Display via ASCII table (see 6.8.1) <br> 00000001 Direct triggering of the segments (see 6.8.2) <br> 00000010 Reserved <br> $\ldots$ <br> 00000100 Reserved |
| $\mathbf{7}$ | 0 Display <br> 1 Display test |

### 6.8.1. Mode 0

ASCII table:

| HEX | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | OA | OB | OC | OD | OE | OF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  | [1 | İ | [1 |  |  | - | [10 | - 0 | 1 |
| 30 |  | [1 | II | II | II | IT | $\underline{\square}$ | -1 | $\underline{I}$ | İ |  |  |  | 0010 |  | 1 |
| 40 |  | $\underline{\square}$ | $\underline{\square}$ | $\begin{aligned} & \overline{10} \\ & \underline{10} \\ & \hline 10 \end{aligned}$ | $\begin{aligned} & \underline{0} \overline{10} \\ & \underline{11} \\ & \hline \end{aligned}$ | I0 | $\begin{aligned} & \overline{0} \\ & \underline{0} \\ & \hline 10 \end{aligned}$ | $\frac{10}{10}$ | II | 1 | $\underline{1}$ | $\underline{1}$ | 10 |  |  | II |
| 50 | II | II. | $\underline{\square}$ | İ | I0 | I | 1 |  | II | II | $\underline{\square 1}$ | I0 | -10 | $\begin{aligned} & \overline{10} \\ & 01 \\ & \hline 10 \end{aligned}$ | II | 0 |
| 60 | I0. | $\underline{\square}$ | $\underline{\square}$ | I0 | $\underline{1}$ |  | IT | $\underline{11}$ | $\underline{\square 10}$ | 0 | 1 | $\stackrel{1}{1}$ | 10 |  | II | 1 |
| 70 | $\underline{1}$ | $\underline{1}$ | -10 | $\underline{10}$ | I0 | 11 | 11 |  | $\underline{11}$ | 1 | $\underline{1}$ | 10 | 10 | II | 0 | 1 |

At all empty fields a space is displayed.

### 6.8.2. Mode 1

Direct triggering of the segments (bit coded, all values in hexadecimal notation.

## Example:

To display the sign with the ASCII code 32 H („2") in mode 1, the value $5 \mathrm{BH}=(01 \mathrm{H} \times 02 \mathrm{H}+40 \mathrm{H}+10 \mathrm{H}+08 \mathrm{H})$ needs to be entered in the data field.


## 7. Error indications

The display controls several possibilites of errors and shows them if required in the display.

## Overflow behavior

If a process value (Integer value) is transfered, that exceeds the display range of the display, then the display shows a fast flashing display with the incorrect value, this means the available significant digits. The minus sign needs its own digit. The same happens in operation type 5, if segments are triggered, that are not available in the display. In this case the defined display segments are flashing with a high frequency.

## Error indications

During the starting sequence a check of the configuration is done. Furthermore an error number / warning number can be found in the Gateway. It then alerts a checksum error, an EEPROM error or a Profibus error.
After this the device processor starts with the cyclic scanning of the display segments that need to be displayed, which state the operating mode.

| Source of error | Message | Description |
| :--- | :--- | :--- |
| Checksum error | "HLP" | Parameter in device processor is not consistent |
| Gateway error | "Er1" | Gateway does not answer |
| EEPROM error | "Er2" | Communikation error with EEPROM |
| SPC3 error | "Er3" | Gateway Profibus error |
| PCHECKSUM error | "Er4" | Gateway checksum of a parameter is faulty |
| DATA overflow | „Er5" | Gateway receives too many data |
| Data exchange error | "Er6" | Profibus master offline |
| Configuration error | „Er7" | Gateway works in an inoperative operating type |
| Watchdog overflow | "Er8" | Watchdog in Gateway is invalid |

If an initialisation error occurs, the error indications appears directly in the display. At an operating error the display reacts with fast flashing of the current dates for at least 10 seconds.
Occured errors can be called up by shortly pushing the [ $\mathbf{\Delta}$ ] or [ $\mathbf{\nabla}$ ] key. The single errors can be called up by pushing the keys shortly several times. Each single error can be deleted by pushing the [ $\mathbf{\Delta}$ ] or $[\mathbf{V}]$ key for approx. 1 second.

If no error did occur then „MOE" appears. After the error indication the display changes back automatically into operting mode after approx. 7 seconds.

## 8. Technical data

| Housing |  |
| :---: | :---: |
| Dimensions | $96 \times 48 \times 70 \mathrm{~mm}$ (BxHxD) |
|  | $96 \times 48 \times 89 \mathrm{~mm}$ (BxHxD) incl. plug-in terminal |
| Panel cut-out | $92.0^{+0.8} \times 45.0^{+0.6} \mathrm{~mm}$ |
| Wall thickness | up to 15 mm |
| Fixing | screw elements |
| Material | PC Polycarbonate, black, UL94V-0 |
| Sealing material | EPDM, 65 Shore, black |
| Protection class | Standard IP65 (Front), IP00 (Back) |
| Weight | approx. 400 g |
| Connection | plug-in terminal; wire-cross section up to $2.5 \mathrm{~mm}^{2}$ |
| Display |  |
| Digit height | 14 mm |
| Segment colour | red (optional green, yellow or blue) |
| Display | 6-digit |
| Interface Profibus |  |
| Protocol | Profibus DP |
| Baud rates | Autobaud recognition up to 12 MBaud |
| Interface | RS485 |
| Wire length | max. 1000 m |
| Bus termination | pull-up/pull-down according to EN50170 |
| Termination | can be activated via connection terminal |
| Power pack | $\begin{aligned} & 10-30 \text { VDC max. } 4 \text { VA } \\ & 230 \text { VAC +/- } 10 \% \text { max. } 10 \text { VA } \end{aligned}$ |
| Memory | EEPROM |
| Data life | $>30$ years at $25^{\circ} \mathrm{C}$ |
| Ambient conditions |  |
| Working temperature | $0 . .50^{\circ} \mathrm{C}$ |
| Storing temperature | $-20 \ldots 80^{\circ} \mathrm{C}$ |
| Wheatering resistance | relative humidity $0-80 \%$ on years average without dew |
| EMV | EN 61326 |
| CE-sign | Conformity to directive 2004/108/EG |
| Safety standard | According to low voltage directive 2006/95/EG EN 61010; EN 60664-1 |

## 9. Safety advice

Please read the following safety advice and the assembly chapter 1 before installation and keep it for future reference.

## Proper use

The M2-1B9-device is designed for the evaluation and display of sensor signals.


Attention! Careless use or improper operation can result in personal injury and/or damage to the equipment.

## Control of the device

The panel meters are checked before dispatch and sent out in perfect condition. Should there be any visible damage, we recommend close examination of the packaging. Please inform the supplier immediately of any damage.

## Installation

The M2-1B9-device must be installed by a suitably qualified specialist (e.g. with a qualification in industrial electronics).

## Notes on installation

- There must be no magnetic or electric fields in the vicinity of the device, e.g. due to transformers, mobile phones or electrostatic discharge.
- The fuse rating of the supply voltage should not exceed a value of 0.5A N.B. fuse!
- Do not install inductive consumers (relays, solenoid valves etc.) near the device and suppress any interference with the aid of RC spark extinguishing combinations or freewheeling diodes.
- Keep input, output and supply lines separate from one another and do not lay them parallel with each other. Position "go" and "return lines" next to one another. Where possible use twisted pair. So, you receive best measuring results.
- Screen off and twist sensor lines. Do not lay current-carrying lines in the vicinity. Connect the screening on one side on a suitable potential equaliser (normally signal ground).
- The device is not suitable for installation in areas where there is a risk of explosion.
- Any electrical connection deviating from the connection diagram can endanger human life and/or can destroy the equipment.
- The terminal area of the devices is part of the service. Here electrostatic discharge needs to be avoided. Attention! High voltages can cause dangerous body currents.
- Galvanic insulated potentials within one complex need to be placed on a appropriate point (normally earth or machines ground). So, a lower disturbance sensibility against impacted energy can be reached and dangerous potentials, that can occur on long lines or due to faulty wiring, can be avoided.

