User manual M2

DMS amplifier with taring for 350Ω melt pressure sensors

Technical features:

- red display of -19999... 99999 Digits (optional: green, orange or blue display)
- minimal installation depth: 70 mm without plug-in screw terminal
- min/max-memory
- 30 additional adjustable supporting points
- display flashing at threshold value exceedance / threshold value undercut
- zero-key for triggering of Hold, Tara or sensor alignment
- digital input for triggering of Hold, Tara or sensor alignment
- permanent min/max-value recording
- mathematic functions like reciprocal value, square root, squaring or rounding
- sliding average determination
- brightness control
- programming interlock via access code
- protection class IP65 at the front side
- plug-in screw terminal
- optional: 2 relay outputs
- accessories: PC-based configuration-kit PM-TOOL with CD \& USB-adapter for devices without keypad and for a simple adjustment of standard devices

Identification

STANDARD TYPES
Weighing technology
Housing size: $96 \times 48 \mathrm{~mm}$

ORDER NUMBER

M2-1WR5B.020X.570xD
M2-1WR5B.020X.670xD

Options - breakdown product key:

Contents

1. Brief description 1
2. Assembly 2
3. Electrical connection 3
4. Functions and operation description 4
4.1. Programming software PM-TOOL 5
5. Setting up the device 6
5.1. Switching on 6
5.2. Standard parameterisation (flat operation level) 6Value assigment for triggering of the signal input
5.3. Programming interlock RUM 10
Activation/Deactivation of the programming interlock or change into the professional level respectively back into the flat operation level
5.4. Extended parameterisation (professional operation level) 11
5.4.1. Signal input parameter IMP 11
Value assigment for triggering of the singal input incl. linearisation
5.4.2. General device parameter FCT 14
Higher device functions like Hold, Tara, min/max permanent, average determination, brightness control, as well as the control of the digital input and the keyboard configuration
5.4.3. Safety parameter $C O D$ 18
Assignment of user and master code for locking or access to certain parameters like e.g. analog output and alarms, etc.
5.4.4. Relay functions REL 19
Parameter for the definition of the setpoints
5.4.5. Alarm parameter RLI....RLY 22Activator and dependencies of the alarms
6. Reset to factory settings 24
Reset of the parameter to the factory default settings
7. Alarms / Relays 25
Function principle of the switching outputs
8. Sensor alignment 27
Function diagram for sensors with existing trimming resistor
9. Technical data 28
10. Safety advices 30
11. Error elimination 31

1. Brief description

The panel meter M2-1W is a 5 -digit device for connection to a 4 -wire-measuring bridge and a visual threshold value monitoring via the display. The configuration happens via four front keys or via the optional PC software PM-TOOL. An integrated programming interlock prevents unrequested changes of the parameters and can be unlocked again by an individual code. Optional the following functions are available: a 10 V bridge feeding, a digital input for the triggering of Hold or Tara and two optional galvanic isolated setpoints, by which free adjustable threshold values can be controlled and reported to a superior master display.
The electrical connection is carried out on the back side via plug-in terminals.
Selectable functions like e.g. the request of the min/max-value, an average determination of the measuring signals, a direct change of threshold value in operation mode and additional measuring supporting points for linearisation complete the modern device concept.

2. Assembly

Please read the Safety advices on page 30 before installation and keep this user manual for future reference.

1. After removing the fixing elements, insert the device.
2. Check the seal to make sure it fits securely.
3. Click the fixing elements back into place and tighten the clamping screws by hand. Then use a screwdriver to tighten them another half a turn.

CAUTION! The torque should not exceed 0.1 Nm !
The dimension symbols can be exchanged before installation via a channel on the side!

3. Electrical connection

Type M2-1WR5B.020X.470xD supply of 115 VAC
Type M2-1WR5B.020X.570xD supply of 230 VAC
Type M2-1WR5B.020X.670xD supply of 10-30 VDC

Options:

4. Function and operation description

Operation

The operation is divided into three different levels.

Menu level (delivery status)

This level is for the standard settings of the device. Only menu items which are sufficent to set the device into operation are displayed. To get into the professional level, run through the menu level and parameterise PROF under menu item RUM.

Menu group level (complete function volume)
Suited for complex applications as e.g. linkage of alarms, setpoint treatment, totaliser function etc. In this level function groups which allow an extended parameterisation of the standard settings are availabe. To leave the menu group level, run through this level and parameterise ULOC under menu item RUM.

Parameterisation level:

Parameter deposited in the menu item can here be parameterised. Functions, that can be changed or adjusted, are always signalised by a flashing of the display. Settings that are made in the parameterisation level are confirmed with [P] and thus saved. Pressing the [O]key (zero-key) leads to a break-off of the value input and to a change into the menu level. All adjustments are saved automatically by the device and it changes into operating mode, if no further key operation is done within the next 10 seconds.

Level	Key	Description
Menu level	P	Change to parameterisation level and deposited values.
	$\Delta \nabla$	Keys for up and down navigation in the menu level.
	0	Change into operation mode.
Parameterisation level	P	To confirm the changes made at the parameterization level.
	$\Delta \square$	Adjustment of the value / the setting.
	0	Change into menu level or break-off in value input.
Menu group level	P	Change to menu level.
	$\Delta \square$	Keys for up and down navigation in the menu group level.
	0	Change into operation mode or back into menu level.

Function chart:

Underline:

(P) Takeover

(O) Stop
Δ Value selection (+)
Value selection (-)

4.1 Parameterisation software PM-TOOL:

Part of the PM-TOOL are the software on CD and an USB-cable with device adapter. The connection happens via a 4-pole micromatch-plug on the back side of the device, to the PCside the connection happens via an USB plug.

System requirements: PC incl. USB interface
Software: Windows XP, Windows VISTA
With this tool the device configuration can be generated, omitted and saved on the PC. The parameters can be changed via the easy to handle program surface, whereat the operating mode and the possible selection options can be preset by the program.

5. Setting up the device

5.1. Switching-on

Once the installation is complete, start the device by applying the voltage supply. First, check once again that all electrical connections are correct.

Starting sequence

For 1 second during the switching-on process, the segment test ($\left.\begin{array}{ll}8 & 8 \\ 8 & 8 \\ 8\end{array}\right)$ is displayed followed by an indication of the software type and, after that, also for 1 second the software version. After the starting sequence, the device switches to operation/display mode.
5.2. Standard parameterisation: (Flat operation level)

To parameterise the display, press the [P] key in operating mode for 1 second. The display then changes to the menu level with the first menu item TYPE.

Menu level Parameterisation level

Selection of the input signal, TYPE:

Default: SEMS.F

Available are 3 measuring input options for known sensor sensibilities: SEMS.1 for $1 \mathrm{mV} / \mathrm{V}$, SEM5. 2 for $2 \mathrm{mV} / \mathrm{V}$ and SENS. 3 for $3,3 \mathrm{mV} / \mathrm{V}$. Each sensor is measured and calibrated up to $4 \mathrm{mV} / \mathrm{V}$ via SEMS.F. Confirm the selection with [P] and the display switches back to menu level.

Setting the measuring range end value, END:
Default: 10000

Set the end value from the smallest to the highest digit with [\mathbf{A}] [$\mathbf{\nabla}$] and confirm each digit with [P]. A minus sign can only be parameterized on the highest value digit. After the last digit, the display switches back to the menu level. If SENS was selected as input option, one can only select between MOCR and CRL. With MOCR, only the previously set display value is taken over, and with CAL, the device takes over both the display value and the analogue input value.

Setting up the measuring range start/offset value, OFFS:
Default: 0

Enter the start/offset value from the smallest to the highest digit with [\mathbf{A}] [\mathbf{V}] and confirm each digit with [P]. After the last digit the display switches back to the menu level. If SEMS was selected as input option, one can only select between MOCR and CRL. With MOCR, only the previously set display value is taken over, and with CRL, the device takes over both the display value and the analogue input value.

Menu level Parameterisation level

Setting the comma/decimal point, $D O T$:
Default: 0

The decimal point on the display can be moved with [\mathbf{A}] [\mathbf{V}] and confirmed with [P]. The display then switches back to the menu level again.

Setting up the display time, SEC:
Default: 1.0

The display time is set with [\mathbf{A}] [\mathbf{V}]. The display moves up in increments of 0.1 up to 1 second and in increments of 1.0 up to 10.0 seconds. Confirm the selection by pressing the [P] button. The display then switches back to the menu level again.

Special function [O]-key, TRST. $4:$

Default: MO

For the operation mode, special functions can be deposited on the [O]-key. Activate this function by pressing the key. With TRRR the display is tared to zero und saved permanently as offset. The device acknowledges the correct taring with 00000 in the display. SET.TR switches into the offset value and can thus be changed via the navigation keys [$\mathbf{\Delta}$] \& [$\mathbf{\nabla}$]. EHT.RE deletes the $\mathrm{min} / \mathrm{max}$ memory. RCTUR shows the measurand, then the display changes onto the parameterised display value. The same goes for RVG, here the sliding average value is displayed. If HOLD has been selected, the moment can be hold constant by pressing the [O]-key and is updated by releasing the key. Advice: $H O L D$ is activated only, if $H O L D$ is selected under parameter DISPL. If RBS.UR (absolute value) is selected, the display shows the values that have been measured since the voltage has been connected, without consideration of a previous taring. With T.TRRR (temporarily Tara) the offset is determined by rising shoulder of the digital input and kept only for the period of the signal. Via SE.CRL a sensor calibration is done by pushing the [O]-key, the flow diagram is shown in chapter 4.4. At RL-1...RL-8 an output can be set and therewith e.g. a switch of the metering point can be done. If MO is selected, the [O]-key is without any function in the operation mode.

Default: ULOC

With the navigation keys [$\mathbf{\Delta}$] [$\mathbf{\nabla}$], one can choose between the deactivated key lock ULOC (works setting), the activated key lock LOC, or the menu group level PROF. Confirm the selection with [P]. After this, the display confirms the settings with "- . . -", and automatically switches to operating mode. If LOC was selected, the keyboard is locked. To get back into the menu level, press [P] for 3 seconds in operating mode. Now enter the CODE (works setting 1234) that appears using [$\mathbf{\Delta}$] [$\mathbf{\nabla}$] plus [P] to unlock the keyboard. FRIL appears if the input is wrong.
To parameterise further functions, PROF needs to be set. The device confirms this setting with „- - - -, and changes automatically into operation mode. By pressing [P] for approx. 3 seconds in operation mode, the first menu group IMP is shown in the display and thus confirms the change into the extended parameterisation. It stays as long activated as ULOC is entered in menu group RUM, thus the display is set back in standard parameterisation again.

5.4. Extended parameterisation (Professional operation level)

5.4.1. Signal input parameters

Menu group level

Menu level Parameterisation level

Selection of the input signal, TYPE:
Default: SEMS.F

There are 3 measuring input options available for known sensor sensibilities: SEM5. 1 for $1 \mathrm{mV} / \mathrm{V}$, SEMS. 2 for $2 \mathrm{mV} / \mathrm{N}$ and SEMS. 3 for $3,3 \mathrm{mV} / \mathrm{V}$. Each sensor is measured and calibrated up to $4 \mathrm{mV} / \mathrm{V}$ via SENS.F. Confirm the selection with [P] and the display switches back to menu level.

Setting the measuring range end value, EMD:
Default: 10000

Set the end value from the smallest to the highest digit with [\mathbf{A}] [$\mathbf{\nabla}$] and confirm each digit with [P]. A minus sign can only be parameterized on the highest value digit. After the last digit, the display switches back to the menu level. If SEMS was selected as input option, one can only select between MOCR and CRL. With MOCR, only the previously set display value is taken over, and with CRL, the device takes over both the display value and the analogue input value.

Setting up the measuring range start/offset value, OFFS:

Default: 0

Enter the start/offset value from the smallest to the highest digit with [$\mathbf{\Delta}$] [\mathbf{V}] and confirm each digit with [P]. After the last digit the display switches back to the menu level. If SEMS was selected as input option, one can only select between MOCR and CRL. With MOCR, only the previously set display value is taken over, and with CRL, the device takes over both the display value and the analogue input value.

Menu level Parameterisation level

Setting up the display time, SEC:
Default: 1.0

Abstract

The display time is set with [$\mathbf{\Delta}$] [\mathbf{V}]. The display moves up in increments of 0.1 up to 1 second and in increments of 1.0 up to 10.0 seconds. Confirm the selection by pressing the [P] button. The display then switches back to the menu level again.

Rescaling the measuring input values, ENDR:
Default: 10000

Rescale the input value of e.g. $1.1 \mathbf{m V}$ (works setting) without applying a measuring signal with this function.

Rescaling the measuring input values, OFFR:
Default: 0

Rescale the input value of e.g. $\mathbf{0 . 1} \mathbf{~ m V}$ (works setting) without applying a measuring signal with this function.
Setting up the tare/offset value, TRRR:
Default: 0

The given value is added to the linearized value. In this way, the characteristic line can be shifted by the selected amount.

Setting up the balance point, RDJ.PT:
Default: 100.00

The balance point for the final value can be selected here in \% by the measuring range SEMS.F.

Menu level	Parameterisation level		
	Number of additional setpoints, SPCT: Default: 00		
5PLL	$\square \triangle \square \square$		
$\\|\nabla\\|$	30 additional setpoints can be defined to the initial value and final value, so linear sensor values are not linearised. Only activated setpoint parameters are displayed.		

Display values for setpoints, D15.01... D15.30:

Under this parameter setpoints are defined according to their value. At the sensor calibration, like at final value / offset, one is asked at the end if a calibration shall be activated.

Analog values for setpoints, IMP. 01 ... IMP. 30 :

The setpoints are always preset according to the selected input signal mA/V. The demanded analog values can be freely adjusted in ascending order.
Device undercut, DIIUMD:
Default: -19999

With this function the device undercut (_ _ _ _) can be defined on a definite value. Exception is input type 4-20 $\mathbf{~ m A}$, it already shows undercut at a signal $<1 \mathrm{~mA}$, so a sensor failure is marked.

Display overflow, DI.OUE:

Default: 99999

With this function the display overflow (-----) can be defined on a definite value.

Menu level	Parameterisation level
$\Gamma E L$ Back to menu group level, RET:	With [P] the selection is confirmed and the device changes into menu group level

5.4.2. General device parameters

Menu group level

Menu level Parameterisation level
Display time, DISEC:
Default: 01.0

The display time is set up with [$\mathbf{\Delta}$] [$\mathbf{\nabla}$]. Thereby you switch up to 1 second in increments of 0.1 and up to 10.0 seconds in increments of 1.0. With [P] the selection is confirmed and the device changes into menu level.
Rounding of display values, ROUMD:
Default: 00001

This function is for instable display values, where the display value is changed in increments of $1,5,10$ or 50 . This does not affect the resolution of the optional outputs. With [P] the selection is confirmed and the device changes into menu level.

For the operation mode, special functions can be laid on the [O]-key. Activate this function by pushing the key. With TRRR the display is tared to zero and is saved permanently as offset. The display confirms the correct taring by showing 00000 in the display. SET.TR switches into the offset value and can be changed via the direction keys [A] [V]. EHT.RE deletes the min/max-memory. RCTUR shows the measuring value. Then the display switches to the parameterised display value. The same goes for RVG, here the sliding average value is displayed. At selected HOLD the instant value is held by pushing the [O]-key and updated by releasing the key. Advice: HOLD can only be activated if HOLD was selected under parameter DISPL. If RBS.UR (absolute value) was selected, the display shows the values that have been measured since the voltage has been connected, without consideration of a previous taring. With T.TRRR (temporarily Tara) the offset is determined by rising shoulder of the digital input and kept only for the period of the signal. Via SE.CRL a sensor calibration is done by pushing the [O]-key, the flow diagram is shown in chapter 8. At RL-1...RL-8 an output can be set and therewith e.g. a switch of the metering point can be done. If $M O$ is selected, the [O]-key has no function in the operation mode.

Special function digital input, DIG.IM:
 Default: MO

For the operation mode, the above shown parameters can be laid on the optional digital input, too. Functions description see TRST.4.

Back to menu group level, RET:

With [P] the selection is confirmed and the device changes into menu group level . F FCT-".

5.4.3. Safety parameters

Menu group level

Menu level Parameterisation level

Adjustment of user code, U.CODE:
Default: 0000

Via this code reduced sets of parameters OUT.LE and RL.LEV can be unlocked during locked programming. Further parameters are not available via this code. The U.CODE can only be changed via the correct input of the R.CODE (Master code).

Master code, R.CODE:
Default: $\ 23 ५$

By entering R.CODE the device will be released and all parameters unlocked.
Release/lock alarm parameters, RL.LEU:
Default: RLL

This parameter describes the user release/user lock of the alarm:

- LIMIT, here only the range of value of the threshold values 1-4 can be changed.
- RLRIM.L, here the range of value and the alarm trigger can be changed.
- RLL, all alarm parameters are released.
- NO, all alarm parameters are locked.

Back to menu group level, RET:

With [P] the selection is confirmed and the device changes into menu group level ,-COD-".

5．4．4．Relay functions

Menu group level

Menu level | Parameterisation level |
| :--- |
| Alerting relay 1，REL－7： |
| Default：$R L-1$ |

Logic relay 1，LOG－1：

Default：OR

Here，the switching behavior of the relay is defined via a logic link，the following schema describes these functions with inclusion of RL－1 and RL－2：This parameter can only be selected if LOGIC was selected under REL－1．

$\square 5$	A1 v A2	As soon as a selected alarm is activated，the relay operates．Equates to operating current principle．
nar	$\overline{A 1 \vee A 2}=\overline{A 1} \wedge \overline{A 2}$	The relay operates only，if no selected alarm is active．Equates to quiescent current principle．
日п』	$\mathrm{A} 1 \wedge \mathrm{a} 2$	The relay operates only，if all selected alarms are active．
の日пd	$\overline{A 1 \wedge A} 2=\overline{A 1} \vee \overline{A 2}$	As soon as a selected alarm is not activated， the relay operates．

With［P］the selection is confirmed and the device changes into menu level．

Menu level Parameterisation level

Alarms for relay 1, com-1:

Default: 8.1

The allocation of the alarms to relay 1 happens via this parameter, one alarm or a group of alarms can be chosen. This parameter can only be selected if LOGIC was selected under REL-7. With [P] the selection is confirmed and the device changes into menu level.

Alerting relay 2, REL-2:
Default: RL-z

Each setpoint (optional) can be linked up via 4 alarms (by default). This can either be inserted at activated alarms RLI/Y or deactivated alarms RLMI/Y. If LOGIC is selected, logical links are available in the menu level LOG-1 and COM-1. Access to these two menu levels via LOGIC, at all other selected functions, these two parameters are overleaped. Via ON/OFF the setpoints can be activated/deactivated, in this case the output and the setpoint display are set/not set on the front of the device. With [P] the selection is confirmed and the device changes into menu level.

5.4.5. Alarm parameters

Menu group level

Menu level Parameterisation level

Depedency of alarm.1, RLRM.1:
Default: RCTUR

The dependency of alarm 1 can be related to special functions, in detail these are the current measurand, the $\mathrm{min} / \mathrm{max}$-value, the absolute value or the sliding average value. If HOLD is selected the alram is hold and processed just after deactivation of HOLD. EHTER causes the dependency either by pressing the [O]-key on the front of the housing or by an external signal via the digital input. With [P] the selection is confirmed and the device changes into menu level.

Example:

By using the maximum value RLRRM. $1=$ MRX.VR in combination with a threshold monitoring $F U-1=H$ HGH, an alarm confirmation can be realised. Use the navigation keys or the fourth key for confirmation.

Threshold values / Limits, Ll-7:
Default: 2000

This limit value defines the threshold, that leads to an activation / deactivation of the alarm.

Hysteresis for threshold values, $\mathrm{Hy}-\mathrm{l}$:
Default: 00000

The difference to the threshold value that causes the delay of the actuation of the alarm, is defined by the hysteresis.

Menu level Parameterisation level

Function for threshold value exceedance/undercut, FU -7:
 Default: HIGH

limit value undercut can be selected with LOUU (LO limit value exceedance can be selected with H HH (HIGH = upper limit value). If e.g. limit value 1 is on a switching threshold of 100 and occupied with function HIGH, the alarm will be activated by reaching the threshold. If the limit value is allocated to LOU, an alarm will be activated by undercut of the threshold.
Switching-on delay, TON-1:
Default: 000

For limit value 1 one can preset a delayed switching-on of 0-100 seconds.
Switching-off delay, TOF-1:
Default: 000

For limit value 1 one can preset a delayed switching-off of 0-100 seconds.

Back to menu group level, RET:

With [P] the selection is confirmed and the device changes into menu group level .,-RLI-".

The same applies to -RL2- to -RL4-.

Programming interlock:
Menu-group level

6. Reset to factoty settings

To return the unit to a defined basic state, a reset can be carried out to the default values.
The following procedure should be used:

- Switch off the power supply
- Press [P]-button
- Switch on voltage supply and press [P]-button until .,--.-" is shown in the display.

With reset, the default values of the program table are loaded and used for subsequent operation. This sets the unit back to the state in which it was supplied.

Caution! All application-related data are lost.

7. Alarms / Relays

This device has 4 virtual alarms that can monitor one limit value in regard of an undercut or exceedance. Each alarm can be allocated to an optional relay output S1-S2; furthermore alarms can be controlled by events like e.g. Hold or min/max-value.

Function principle of alarms / relays

Alarm / Relay \mathbf{x}
Deactivated, instantaneous value, min/max-value, Hold-value, sliding average value or an activation via the digital input or the [O]-key.
Switching threshold Threshold / limit value of the change-over
Hysteresis
Broadness of the window between the switching thresholds
Working principle
Operating current / Quiescent current

Operating current

By operating current the alarm S1-S2 is off below the threshold and on on reaching the threshold.

Quiescent current

By quiescent current the alarm S1-S2 is on below the threshold and switched off on reaching the threshold.

Switching-on delay

The switching-on delay is activated via an alarm and e.g. switched 10 seconds after reaching the switching threshold, a short-term exceedance of the switching value does not cause an alarm, respectively does not cause a switching operation of the relay. The switching-off delay operates in the same way, keeps the alarm / the relay switched longer for the parameterised time.

8. Sensor calibration Offset/Final value

The device is equipped with a semi-automatic sensor calibration (SENSF). A switching output operates the trimming resistor, which exists in some sensors. An adjustment of offset and final value takes place, after which the sensor can be used directly. Depending on parameterisation, the calibration can be realized via the fourth key or via the digital input. It is possible to key during the calibration steps. So, reference signals can be connected manually. However the calibration will be interrupted after 30 seconds.

9. Technical data

Housing	
Dimensions	96x48x70 mm (BxHxD)
	$96 \times 48 \times 89 \mathrm{~mm}(\mathrm{BxHxD})$ including plug-in terminal
Panel cut-out	$92.0^{+0.8} \times 45.0^{+0.6} \mathrm{~mm}$
Wall thickness	up to 15 mm
Fixing	screw elements
Material	PC Polycarbonate, black, UL94V-0
Sealing material	EPDM, 65 Shore, black
Protection class	standard IP65 (front), IP00 (back side)
Weight	approx. 200 g
Connection	plug-in terminal; wire cross-section up to $2.5 \mathrm{~mm}^{2}$
Display	
Digit height	14 mm
Segment colour	red (optional green, orange or blue)
Display range	-19999 up to 99999
Setpoints	one LED per setpoint
Overflow	horizontal bars at the top
Underflow	horizontal bars at the top
Display time	0.1 to 10.0 seconds
Input	
Sensor sensitivity	$1 \mathrm{mV} / \mathrm{V}, 2 \mathrm{mV} / \mathrm{V}, 3.3 \mathrm{mV} / \mathrm{V}$, free up to $4 \mathrm{mV} / \mathrm{V}$
Measuring bridge	300-500 Ω / 2-40 mA
Measuring error	$0,2 \%$ of measuring range in electromagnetic dominated environment, 1% of measuring range in industrial invironment with strong disturbing source
Digital input	$\begin{aligned} & <2.4 \mathrm{~V} \text { OFF, } 10 \mathrm{~V} \text { ON, max. } 30 \mathrm{VDC} \\ & \mathrm{R}_{1} \sim 5 \mathrm{k} \Omega \end{aligned}$
Sensor calibration	always required
Accuracy	
Temperature drift	$100 \mathrm{ppm} / \mathrm{K}$
Measuring time	$0.1 . . .10 .0$ seconds
Measuring principle	U/F-conversion
Resolution	approx. 18 bit at 1 s measuring time, $3.3 \mathrm{mV} / \mathrm{V}$ measuring range

Output	
Switching outputs	
Relay with change-over contacts Switching cycles	250 VAC / 5 AAC; 30 VDC / 5 ADC 30×10^{3} at 5 AAC, 5 ADC ohm resistive burden 10×10^{6} mechanically Diversification according to DIN EN50178 / Characteristics according to DIN EN60255
Power supply	230 VAC $\pm 10 \%$ max. 10 VA 10-30 VDC galv. isolated, max. 4 VA
Memory	EEPROM
Data life	≥ 100 years at $25^{\circ} \mathrm{C}$
Ambient conditions	
Working temperature	$0 \ldots .5{ }^{\circ} \mathrm{C}$
Storing temperature	$-20 . . .80^{\circ} \mathrm{C}$
Weathering resistance	relative humidity $0-80 \%$ on years average without dew
EMV	EN 61326
CE-sign	Conformity according to directive 2014/30/EU
Safety standard	According to low voltage directive 2014/35/EU EN 61010; EN 60664-1

10. Safety advices

Please read the following safety advices and the assembly chapter 2 before installation and keep it for future reference.

Proper use

The M2-1W-device is designed for the evaluation and display of sensor signals.

Danger! Careless use or improper operation can result in personal injury and/or cause damage to the equipment.

Control of the device

The panel meters are checked before dispatch and sent out in perfect condition. Should there be any visible damage, we recommend close examination of the packaging. Please inform the supplier immediately of any damage.

Installation

The M2-1W-device must be installed by a suitably qualified specialist (e.g. with a qualification in industrial electronics).

Notes on installation

- There must be no magnetic or electric fields in the vicinity of the device, e.g. due to transformers, mobile phones or electrostatic discharge.
- The fuse rating of the supply voltage should not exceed a value of 0.5A N.B. fuse!
- Do not install inductive consumers (relays, solenoid valves etc.) near the device and suppress any interference with the aid of RC spark extinguishing combinations or freewheeling diodes.
- Keep input, output and supply lines separate from one another and do not lay them parallel with each other. Position "go" and "return lines" next to one another. Where possible use twisted pair. So, you receive best measuring results.
- Screen off and twist sensor lines. Do not lay current-carrying lines in the vicinity. Connect the screening on one side on a suitable potential equaliser (normally signal ground).
- The device is not suitable for installation in areas where there is a risk of explosion.
- Any electrical connection deviating from the connection diagram can endanger human life and/or can destroy the equipment.
- The terminal area of the devices is part of the service. Here electrostatic discharge needs to be avoided. Attention! High voltages can cause dangerous body currents.
- Galvanic isolated potentials within one complex need to be placed on an appropriate point (normally earth or machines ground). So, a lower disturbance sensibility against impacted energy can be reached and dangerous potentials, that can occur on long lines or due to faulty wiring, can be avoided.

11. Error elimination

	Error description	Measures
1.	The unit permanently indicates overflow.	- The input has a very high measurement, check the measuring circuit. - With a selected input with a low voltage signal, it is only connected on one side or the input is open. - Not all of the activated switching points are parameterised. Check if the relevant parameters are adjusted correctly. - An absolutely incorrect alignment has been done bevor, e.g. without connected sensor. In this case a reset to the factory setting should be carried out.
2.	The unit permanently shows underflow.	- The input has a very low measurement, check the measuring circuit. - With a selected input with a low voltage signal, it is only connected on one side or the input is open. - Not all of the activated switching points are parameterised. Check if the relevant parameters are adjusted correctly. - An absolutely incorrect alignment has been done bevor, e.g. without connected sensor. In this case a reset to the factory setting should be carried out.
3.	The word HELP lights up in the 7 -segment display.	- The unit has found an error in the configuration memory. Perform a reset on the default values and reconfigure the unit according to your application.
4.	Program numbers for parameterising of the input are not accessible.	- Programming lock is activated - Enter correct code
5.	Err1 lights up in the 7 -segment display	- Please contact the manufacturer if errors of this kind occur.
6.	The device does not react as expected.	- If you are not sure that the device has been parameterised before, then follow the steps as written in chapter 6 . and set it back to its delivery status.

