User manual M3

Setpoint generator: with set point query

Device performance:

- red display of $-19999 \ldots 99999$ digits (optional: green, orange, blue)
- minimal installation depth: 120 mm without plug-in terminal
- definable adjustment for the setpoint
- set point query via Profibus DP
- adjustable increments per keystroke
- display flashing at limit exceedance / limit undercut
- digital inputs for key switch or external adjusting keys
- zero-key for quick recall of a default value
- configurable code as adjustment protection for the setpoint
- different operation options for the adjustment of the setpoint
- optional starting performance with last adjustment value or default value
- optional speed levels for the adjustment of the setpoint
- quick reaction during adjustment of the setpoint value (Ramp function)
- programming lock via code entry
- protection class IP65 at the front
- plug-in srew terminal
- accessories: PC-based configuration-kit PM-TOOL with CD \& USB-adapter for devices without keypad and for a simple adjustment of standard device

Identification

STANDARD-TYPES	ORDER NUMBER
Setpoint generator Housing size: $96 \times 48 \mathrm{~mm}$	M3-1GR5B.9000.S70BD
M3-1GR5B.9000.W70BD	

Options - break-down of order code:

Please state physical unit by order, e.g. \%

Contents

1. Brief description 2
2. Assembly 3
3. Electrical connection 4
4. Functions and operation description 5
4.1. Programming software PM-TOOL 6
5. Setting up the device 7
5.1. Switching on 7
5.2. Standard parameterisation (flat operation level) 7
Value assigment for triggering of the singal output
5.3. Programming interlock .RUN" 19
Activation/Deactivation of the programming interlock or change into the professional level respectively back into the flat operation level
5.4. Extended parameterisation (professional operation level) 10
5.4.1. Signal input parameter „IMP" 10
Value assigment for setpoint, triggering of digital inputs and assignment of keys, as well as the behaviour at device start
5.4.2. General device parameter „FCT" 13
Adjustment of the optical alarm (display flashing)
5.4.3. Safety parameter „COD" 14
Assignment of user and master code for locking or access to certain parameters like e.g. analog output and alarms, etc.
5.4.4. Serial interface „SER‘ 15
Profibus device address
5.4.5. Relay functions „REL" 16
Parameter for the definition of the optical setpoints
5.4.6. Alarm parameter „RLI...RL4' 18
Activator and dependencies of the alarms
6. Reset to factory settings 19
Reset of the parameter to the factory default settings
7. Alarms 20
Function principle of the optical switching outputs
8. Technical data 21
9. Safety advices 23
10. Error elimination 24

1. Brief description

Setpoint function

A setpoint generator enables the user to adjust operating parameters of a machine (like e.g. an oven temperature, rotational speed or filling weight) in the most easiest way and relays it via the integrated outputs to a superior control. Thereby the production engineer can determine the adjustment range and thus guarantee a safe operation. This makes the setpoint generator an ideal device for simple control with a few parameter or for a more complex regulation, where a simple relation between setpoint value and the machine behavior that needs to be controlled is not possible (e.g. the filling weight of an ampoule filling system).
For the setpoint generator the display value is changed manually by the user, depending on the adjustment TYPE via the front keys or via the digital inputs. The possible adjustment range is definable via the parameters END and OFFS. It will be evaluated via the Profibus. By changing the setpoint in the display, the initial value is linear and carried isochronous.
Additionally alarms can be used to warn the user about critical settings or to activate an change of operation mode, depending on the setpoiont.
To secure the favoured setpoint against accidental adjustment, a releasing code S.CODE can be activated or an electric key-switch can be provided. If an external key-switch is used via digital input 1, then the device shows a -LOC- in the display by any attempt of adjustment via the keys [$\mathbf{\Delta}$] [\mathbf{V}]. By operating the setpoint via the front keys, a default value/initial value STRRT can be recalled via the [O]-key. It can be used for one system as emergency switch, too.
This initial value is loaded in the basic setting during system start and displayed. If L.STRR was selected instead of L.SRVE as reset behaviour RESET, the device loads up the last adjusted effective setpoint. The latter is safed approx. 1 minute after each change of the setpoint.
The two excisting digital inputs react depending on the setting of IM.LED to a HIGH- or a LOW- signal.

Advice:

The set point is ignored as whole number in INT16 (operating mode 1) of $-19999 \ldots 32767$ or in INT32 (operating mode 2) -19999...99999. Thereby the decimal point will be ignored. Use the corresponding GSD-file. In general it can be found in the device group Gateway. As long as the device has no contact to the Profibus, the set point flashes quickly, but can already be adjusted!

2. Assembly

Please read the Safety advice on page 23 before installation and keep this user manual for future reference.

1. After removing the fixing elements, insert the device.
2. Check the seal to make sure it fits securely.
3. Click the fixing elements back into place and tighten the clamping screws by hand. Then use a screwdriver to tighten them another half a turn.

CAUTION! The torque should not exceed 0.1 Nm !

The dimension symbols can be exchanged before installation via a channel on the side!

3. Electrical connections

Type M3-1GR5B.9000.S70BD supply of $100-240$ VAC $50 / 60 \mathrm{~Hz}, \mathrm{DC} \pm 10 \%$
Type M3-1GR5B.9000.W70BD supply of 10-40 VDC galv. isolated, $18-30$ VAC $50 / 60 \mathrm{~Hz}$

M3-devices with frequency or pulse input

External pushbutton -/+

Advice: Please mind the selected input level IM.LED!

Adjustment lock for setpoint value

Advice: Please mind the selected input level IM.LED!

4. Function and operation description

Operation

The operation is divided into three different levels.
Menu level (delivery status)
This level is for the standard settings of the device. Only menu items which are sufficent to set the device into operation are displayed. To get into the professional level, run through the menu level and parameterise " PROF" under menu item RUM.

Menu group level (complete function volume)
Suited for complex applications as e.g. linkage of alarms, setpoint treatment, totaliser function etc. In this level function groups which allow an extended parameterisation of the standard settings are availabe. To leave the menu group level, run through this level and parameterise „ULOL,, under menu item RUM.

Parameterisation level:

Parameter deposited in the menu item can here be parameterised. Functions, that can be changed or adjusted, are always signalised by a flashing of the display. Settings that are made in the parameterisation level are confirmed with [P] and thus safed. Pressing the [O]-key (zero-key) leads to a break-off of the value input and to a change into the menu level. All adjustments are safed automatically by the device and it changes into operating mode, if no further key operation is done within the next 10 seconds.

Level	Key	Description
Menu level	\boxed{P}	Change to parameterisation level and deposited values.
		∇

Function chart:

Underline:

(P) Takeover
(0) Stop

- Value selection (+)
- Value selection (-)

4.1 Parameterisation software PM-TOOL:

Part of the PM-TOOL are the software on CD and an USB-cable with device adapter. The connection is done via a 4-pole micromatch-plug on the back side of the device, to the PC-side the connection happens via an USB plug.

System requirements: PC incl. USB interface
Software: Windows XP, Windows VISTA
With this tool the device configuration can be generated, omitted and safed on the PC. The parameters can be changed via the easy to handle program surface, whereat the operating mode and the possible selection options can be preset by the program.

5. Setting up the device

5.1. Switching-on

Once the installation is complete, you can start the device by applying the voltage supply. Before, check once again that all electrical connections are correct.

Starting sequence

For 1 second during the switching-on process, the segment test (88888) is displayed followed by an indication of the software type and, after that, also for 1 second the software version. After the starting sequence, the device switches to operation/display mode.

5.2. Standard parameterisation: (flat operation level)

To parameterize the display, press the [P]-key in operating mode for 1 second. The display then changes to the menu level with the first menu item TYPE.

Menu level	Parameterisation level
	Setting up the increments, STEP: Default: 1 The increments for the adjustment types F.TAST and E.TAST are adjusted from the smallest to the highest digit with $[\mathbf{\Delta}][\mathbf{V}]$ and confirmed digit per digit with $[\mathbf{P}]$. After the last digit the display changes back into menu level. Per keystroke the setpoint is changed by the increment, which can be selected from 1... 99999 .
$\begin{aligned} & 5 \square E E \square \\ & \nabla \nabla \Delta \end{aligned}$	Maximum possible change acceleration, SPEED: Default: PRCE.I Via SPEED the maximum possible change accleration of the setpoint in permanent activation of up or down can be set. At PRCE. 1 no multiplication of the increment takes place. For each other Pace-step the maximum speed muliplies tenfold to PRCE. 4 with factor 1000. The change acceleration is gradually increased at permanent active up or down.
	Setting the decimal point, DOT: Default: 0 \square \square \square \square Dis , The decimal point on the display can be moved with [\mathbf{A}] [\mathbf{V}] and confirmed with [P]. The display then switches back to the menu level again. The adjusted decimal point has no influence on the increment and is displayed without additional dependency.
$\begin{aligned} & -E G E L \\ & \|\nabla \Delta\| \end{aligned}$	Setting up the switching-on behaviour, RESET: Default: L.STRR L.5RUE With this parameter the setpoint behaviour after the switching-on of the device can be selected by [$\mathbf{\Delta}][\mathbf{V}]$ and confirmed with $[\mathrm{P}]$. With L.SAVE the last effective setting is taken over as setpoint during switching-on, the change is taken over after 30 seconds and is then available as initial value. At L.STRR the defined initial value STRRT is loaded.
$\begin{aligned} & A \cap . L E i \\ & \|\nabla \Delta\| \end{aligned}$	Setting the active input level, IM.LEV: Default: LOUU \square HILH \square The active input level can be adjusted to LOW or HIGH with [$\mathbf{\Delta}$] [\mathbf{V}]. With [P] the selection is confirmed and the display changes back into menu level. This is a very important setting, as it is used for all operation types TYPE!
	Setting the code for the adjustment lock, S.CODE: Default: 0000 The code for the adjustment lock is adjusted from the smallest to the highest digit with [$\mathbf{\Delta}$] [\mathbf{V}] and confirmed digit per digit with [P]. After the last digit the display changes back into menu level. If the $5 . C O D E$ is set on a value unequal 0000 , the code lock is activated for TYPE. F.TRST and F.IMPU. This means at each adjustment attempt the enable code S.CODE is recalled. For TYPEsettings E.TRST the enable code $5 . C O D E$ has no meaning.

Menu level	Parameterisation level			
	Select devi Default： 125 Device add which is the returning in	address，PB．ADD： es from 1－126 ivery state．After perating mode．A	E P be adjusted．As default hanging this parameter th r this，the new address will	lue the addre vice will run used directly．
$\begin{aligned} & \because \square . E r \mid \\ & \|\nabla \Delta\| \end{aligned}$	Profibus e Default： 0 \square Profibus erro existing co describe co Overview e	PB．ERR： \square are reset automa unication equates ex or sporadic err numbers：	cally by the device or man to error number 6144， s．Error bits can be identif	ly by pushing numbers did by subtraction
	Error bit	Decimal value	Description	resettable
	Bit 12	4096	Communication offline	automatically
	Bit 11	2048	Fieldbus offline	automatically
	Bit 10	1024	Invalid parameterization	automatically
	Bit 9	512	Invalid configuration	automatically
	Bit 8	256	Value verification failed	manually
	Bit 3	8	CRC failure	manually
	Bit 2	4	Timeout	manually
	Bit 1	2	UART error	manually
	Bit 0	1	Buffer overflow	manually
$\begin{array}{c\|} \text { HILGOE } \\ \|\nabla \Delta\| \end{array}$	User code Default： With this cod before．By appears in preset U．CO parameteris	igit number－com （＞0000），all para hing $[P]$ for app display．To get to eeds to be ente n，until the R．CODE	ination free available）， \square meters are locked，if $L O C$ x． 3 seconds during op he reduced parameters th ．This code has to be Master code）activates all	E： selected under ation mode， were activated ntered before ameters again

Menu level	Parameterisation level		
5.3. Programming interlock			Activation / Deactivation of the programming interlock or completion of the standard
:---			
parameterisation with change into menu group level (complete function volume), RUM:			
Default: ULOC			

5.4. Extended parameterisation (professional operation level)

5.4.1. Signal input parameters

Menu level	Parameterisation level

Menu level	Parameterisation level
	Setting up the adjustment end value, END: Default: 10000 Set the end value from the smallest to the highest digit with [$\mathbf{\Delta}$][\mathbf{V}] and confirm each digit with [P]. A minus sign can only be parameterized on the leftmost digit. After the last digit, the display switches back to the menu level. The value that is set here, can later on not be exceeded while adjusting the setpoint.
	Setting up the adjustment start/offset value, OFFS: Default: 0 Enter the start/offset value from the smallest to the highest digit with [$\mathbf{\Delta}$] [\mathbf{V}] and confirm each digit with [P]. A minus sign can only be parameterized on the leftmost digit. After the last digit the display switches back to the menu level. The value that is set here, can later on not be undercut while adjusting the setpoint.
$\begin{aligned} & \text { GLGrL } \\ & \qquad \nabla \Delta \mid \end{aligned}$	Setting up the adjustment initial value, STRRT: Default: 0 The initial value, which is loaded by start or on [O], is adjusted from the smallest to the highest digit with [$\mathbf{\Delta}$] [\mathbf{V}] and confirmed digit per digit with [P]. A minus sign can only be parameterized on the leftmost digit. After the last digit the display changes back into menu level.
$\begin{aligned} & \boxed{5 L E F} \\ & \|\nabla \Delta\| \end{aligned}$	Setting up the increments, STEP: Default: 1 The increments for the adjustment types F.TRST and E.TAST are adjusted from the smallest to the highest digit with [$\mathbf{\Delta}$] [\mathbf{V}] and confirmed digit per digit with [P]. After the last digit the display changes back into menu level. Per keystroke the setpoint is changed by the increment, which can be selected from 1... 99999.
$\begin{aligned} & 5 P E E d \\ & \|\nabla \Delta\| \end{aligned}$	Maximum possible change acceleration, SPEED: Default: PRCE. 4 PREE. : PRIE. 2 Via SPEED the maximum possible change accleration of the setpoint in permanent activation of up or down can be set. At PACE. 1 no multiplication of the increment takes place. For each other Pace-step the maximum speed muliplies tenfold to PRCE. 4 with factor 1000. The change acceleration is gradually increased at permanent active up or down.

5.4.2. General device parameters

5.4.3. Safety parameters

Menu level	Parameterisation level	
	User code U.CODE: Default: 0000 Via this code reduced sets of parameters can be released. A change of the U.CODE can only be done via the correct input of the R. $C O D E$ (master code).	
	Master code, R.CODE: Default: 1234 By entering R. $C O D E$ the device will be unlocked and all parameters are released.	
	Release/lock analog output parameters, OUT.LE: Default: RLL Analog output parameter can be locked or released for the user: - At EM-OF the initial or final value can be changed in operation mode. - At OUT.ED the output signal can be changed from e.g. 0-20 mA to $4-20 \mathrm{~mA}$ or $0-10$ VDC. - At RLL analog output parameters are released. - At MO all analog output parameters are locked.	
$\begin{aligned} & \text { RLLEL } \\ & \|\nabla \Delta\| \end{aligned}$	This parameter describes the user relase/user lock of the alarm. - LIMIT, here only the range of value of the threshold values 1-4 can be changed. - RLRM.L, here the range of value and the alarm trigger can be changed. - RLL, all alarm parameters are released. - MO. all alarm parameters are locked.	
\square $\sim E L$ $\nabla \triangle \square$	Back to menu group level, RET:With [P] the selection is confirmed and the device changes in	

5.4.4. Serial interface

5.4.5. Relay functions

Menu level

Menu level	Parameterisation level		
	Alarm relay 2 Default：OFF LaU1 Each setpoint at activated available in th at all other se can be activat the front of the level．	REL－2： optional）can be linked arms RLI／4 or deactiva menu level $L O G-1$ and C ected functions，these d／de－activated，in this device．With［P］the s	$\text { RL-nI RL-n } 4$ \square via 4 alarms（by default）．This can either be inserted d alarms RLMT／Y．If LOGIC is selected，logical links are －1．One can only get to these two menu levels via LOGIC， parameters are overleaped．Via OM／OFF the setpoints e the output and the setpoint display are set／not set on ction is confirmed and the device changes into menu
$\begin{gathered} \operatorname{LaI}-\Sigma \\ \|\nabla \Delta \Delta\| \end{gathered}$	Logic relay 2, Default：OR \square Here，the sw describes the		\square Rind \square nRind ay is defined via a logic link，the following schema RL－ l and $\mathrm{RL}-\mathrm{z}$ ：
	$\square 15$	A1 v A2	As soon as a selected alarm is activated，the relay operates．Equates to operating current principle．
	のロー	$\overline{A 1 \vee A 2}=\overline{A 1} \wedge \overline{A 2}$	The relay operates only，if no selected alarm is active．Equates to quiescent current principle．
	\boldsymbol{R}	$\mathrm{A} 1 \wedge \mathrm{a} 2$	The relay operates only，if all selected alarms are active．
	のアの』	$\overline{A 1 \wedge A 2}=\overline{A 1} \vee \overline{A 2}$	As soon as a selected alarm is not activated，the relay operates．
	With［P］the selection is confirmed and the device changes into menu level．		
$\begin{aligned} & \angle \square \Pi-\Xi \\ & \|\nabla \Delta \Delta\| \end{aligned}$	Alarms for re Default： $\boldsymbol{\beta} .2$ R． The allocation alarms can be level．	ay 2，con－z： R． 2 of the alarms to relay chosen．With［P］the	\square happens via this parameter，one alarm or a group o ction is confirmed and the devices changes into menu
$\begin{aligned} & \square \\ & \hline \\ & \hline \nabla E L \\ & \nabla \Delta \mid \end{aligned}$	Back to menu With［P］the s	group level，RET： ection is confirmed an	he device changes into menu group level ．．－REL－＂．

5.4.6. Alarm parameters

Menu level	Parameterisation level
$\begin{array}{l\|l\|l\|} \hline L & i & -i \\ \nabla & \Delta \end{array}$	Threshold values / limit values, $\mathrm{L}-\mathrm{T}$: Default: 2000 For both limit values, two different values can be parameterized. With this, the parameters for each limit value are called up one after another.
$\begin{aligned} & \frac{H \Xi-i}{\|\nabla \Delta\|} \\ & \|\nabla \Delta\| \end{aligned}$	Hysteresis for limit values, $\mathrm{HY}-\mathrm{l}$: Default: 00000 \square \square A hysteresis function exists for all limit values, that reacts according to the settings (threshold exceedance / threshold undercut).
	Function if display falls below / exceeds limit value, FU-l: Default: HIGH HILH Lawn \square The limit value undercut can be selected with LOUU (LOW = lower limit value) and limit value exceedance can be selected with HIGH (HIGH = upper limit value). If e.g. limit value 1 is on a switching threshold of 100 and occupied with function $H G H$, the alarm will be activated when reaching the threshold. If the limit value is allocated to LOW, an alarm will be activated by undercut of the threshold.
$\begin{aligned} & t a n-i \\ & \|\nabla \Delta\| \end{aligned}$	Switching-on delay, TOM-l: Default: 000 For limit value 1 one can preset a delayed switching-on of 0-100 seconds.

Menu level	Parameterisation level
$\begin{aligned} & E \square F-i \\ & \|\nabla \Delta\| \end{aligned}$	Switching-off delay, TOF-7: Default: 000 For limit value 1 one can preset a delayed switching-off of 0-100 seconds.
	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level ..- RLI -"

The same applies to -RL2- to -RLL-

Programming interlock:

Description see page 10, menu-level RUM

6. Reset to factoty settings

To return the unit to a defined basic state, a reset can be carried out to the default values.

The following procedure should be used:

- Switch off the power supply
- Press button [P]
- Switch on voltage supply and press [P]-button until ..- .. -" is shown in the display.

With reset, the default values of the program table are loaded and used for subsequent operation. This sets the unit back to the state in which it was supplied.

Caution! All application-related data are lost.

7. Alarms

This device has 4 virtual alarms that can monitor one limit value in regard of an exceedance or undercut. Each alarm can be allocated to an optional relay output S1-S2.

Function principle of alarms / relays	
Alarm / Relay \mathbf{x}	Deactivated, instantaneous value, min/max-value, Hold-value, totaliser value
Switching threshold	Threshold / limit value of the change-over
Hysteresis	Broadness of the window between the switching thresholds
Working principle	Operating strom / Quiescent current

Operating current

By operating current the alarm S1-S4 is off below the threshold and on on reaching the threshold.

Quiescent current

By quiescent current the alarm S1-S4 is on below the threshold and switched off on reaching the threshold.

Switching-on delay

The switching-on delay is activated via an alarm and e.g. switched 10 seconds after reaching the switching threshold, a short-term exceedance of the switching value does not cause an alarm, respectively does not cause a switching operation of the relay. The switching-off delay operates in the same way, keeps the alarm / the relay switched longer for the parametrised time.

8. Technical data

Housing	
Sizes	$96 \times 48 \times 120 \mathrm{~mm}$ (BxHxD)
	$96 \times 48 \times 139 \mathrm{~mm}(\mathrm{BxHxD})$ incl. plug-in terminal
Panel cut-out	$92.0^{+0.8} \times 45.0^{+0.6} \mathrm{~mm}$
Wall thickness	up to 15 mm
Fixing	screw elements
Material	PC polycarbonate, black, UL94V-0
Sealing material	EPDM, 65 Shore, black
Protection class	standard IP65 (front), IP00 (back side)
Weight	approx. 350 g
Connection	plug-in terminal; wire cross section up to $2.5 \mathrm{~mm}^{2}$
Display	
Digit height	14 mm
Segment colour	red (optional green, yellow or blue)
Range of display	-19999 to 99999
Setpoints	one LED per setpoint
Input	
Transmitter	2 digital inputs
HTL level TTL level	$\begin{aligned} & >10 \mathrm{~V} /<6 \mathrm{~V}-\operatorname{Uin} \max .30 \mathrm{~V} \\ & >4.6 \mathrm{~V} /<1.9 \mathrm{~V} \end{aligned}$
Input resistance	$\mathrm{R}_{\mathrm{I}} \sim 5 \mathrm{k} \Omega$
Output	
Contact supply	$15 \mathrm{VDC} / 10 \mathrm{~mA}$
Interface	
Protocol Baud rate Interface Wire length Bus termination Termination	Profibus DP automatic baud detection up to 12 MBaud RS485 max. 1000m pullup/pulldown according to EN 50170 via connection terminal
Power pack	$100-240$ VAC $50 / 60 \mathrm{~Hz}, \mathrm{DC} \pm 10 \%$ (max. 15 VA) $10-40$ VDC galv. isolated, $18-30$ VAC $50 / 60 \mathrm{~Hz}$ (max. 15 VA)
Memory	EEPROM
Data life	≥ 100 years at $25^{\circ} \mathrm{C}$

Ambient conditions		
Working temperature	$0 \ldots 50^{\circ} \mathrm{C}$	
Storing temperature	$-20 \ldots 80^{\circ} \mathrm{C}$	
Climatic density	relative humidity $0-80 \%$ on years average without dew	
EMV	EN 61326	
CE-sign	Conformity to directive 2004/108/EG	
Safety standard	EN 61010; EN 60664-1	

9. Safety advices

Please read the following safety advice and the assembly chapter 1 before installation and keep it for future reference.

Proper use

The M3-1G-device is designed for the evaluation and display of sensor signals.

Attention! Careless use or improper operation can result in personal injury and/or cause damage to the equipment.

Control of the device

The panel meters are checked before dispatch and sent out in perfect condition. Should there be any visible damage, we recommend close examination of the packaging. Please inform the supplier immediately of any damage.

Installation

The M3-1G-device must be installed by a suitably qualified specialist (e.g. with a qualification in industrial electronics).

Notes on installation

- There must be no magnetic or electric fields in the vicinity of the device, e.g. due to transformers, mobile phones or electrostatic discharge.
- The fuse rating of the supply voltage should not exceed a value of 0.5A N.B. fuse!
- Do not install inductive consumers (relays, solenoid valves etc.) near the device and suppress any interference with the aid of RC spark extinguishing combinations or freewheeling diodes.
- Keep input, output and supply lines separate from one another and do not lay them parallel with each other. Position "go" and "return lines" next to one another. Where possible use twisted pair. This way, best results are received.
- Screen off and twist sensor lines. Do not lay current-carrying lines in the vicinity. Connect the screening on one side on a suitable potential equaliser (normally signal ground).
- The device is not suitable for installation in areas with a risk of explosion.
- Any electrical connection deviating from the connection diagram can endanger human life and/or can destroy the equipment.
- The terminal area of the device is part of the service. Here, electrostatic discharge needs to be avoided. Attention! High voltages can cause dangerous body currents.
- Galvanic isolated potentials within one complex need to be placed on an appropriate point (normally earth or machines ground). So, a lower disturbance sensibility against impacted energy can be reached and dangerous potentials, that can occur on long lines or due to faulty wiring, can be avoided.

10. Error elimination

	Error description	Measures
1.	The device shows -LOC- at the attempt of change.	- The adjustment lock for the setpoint is active, please check if there is a key-switch. - The active input signal IN.LEL has to be adjusted to HIGH instead of LOU or vice versa.
2.	By the code recall for the setpoint appears FRIL or there is an unexpected code-recall.	- At an unexpected code recall, S.CODE needs to be set on a value unequal 0000 . Check the parametrisation and set back the parameter. - If FRIL appears after entering the code, check the 5.CODE in the parameterisation.
3.	The word "HELP" lights up in the 7-segment display.	- The unit has found an error in the configuration memory. Perform a reset on the default values and re-configure the unit according to your application.
4.	The displayed set point flashes very quickly.	- Device or Profibus are not yet in operating mode. Please start the bus or control the wiring including the termination.
5.	The display does not change back to parametrisation after pressing [P].	- Programming lock is activated - Enter correct code
6.	"ERRI" lights up in the 7-segment display	- Please contact the manufacturer if errors of this kind occur.
7.	The device does not react as expected.	- If you are not sure if the device has been parameterised before, then follow the steps as written in chapter 6 and set it back to its delivery status.

\qquad

