User manual M3

Direct current / direct voltage signals 0/4-20 mA, 0-10 VDC

Technical features:

- red display of -19999... 99999 digits (optional: green, orange or blue display)
- minimal installation depth: 90 mm without plug-in screw terminal
- min/max-memory
- 30 additional adjustable supporting points
- display flashing at threshold value exceedance / threshold value undercut
- navigation keys for triggering of Hold, Tara
- permanent min/max-value recording
- volume metering (Totaliser)
- mathematic functions like reciprocal value, square root, squaring or rounding
- setpoint generator
- sliding average determination
- brightness control
- programming interlock via access code
- protection class IP65 at the front side
- plug-in screw terminal
- optional: 2 PhotoMos outputs
- optional: sensor supply or analog output
- optional: galvanic isolated digital input
- accessories: PC-based configuration-kit PM-TOOL with CD \& USB-adapter for devices without keypad and for a simple adjustment of standard devices

Identification

STANDARD-TYPES	ORDERING NUMBER
Direct current, direct voltage Housing size: $48 \times 24 \mathrm{~mm}$	M3-7VR5A.0001.S70xD
	M3-7VR5A.0001.770xD

Options - breakdown of order code:

Please state physical unit by order, e.g m/min

Contents

1. Brief description 2
2. Assembly 3
3. Electrical connection 4
4. Functions and operation description 6
4.1. Programming software PM-TOOL 7
5. Setting up the device 8
5.1. Switching on 8
5.2. Standard parameterisation (flat operation level) 8
Value assigment for triggering of the signal input
5.3. Programming interlock , $R U M^{\prime \prime}$ 11
Activation/deactivation of the programming interlock or change into the professional level respectively back into the flat operation level
5.4. Extended parameterisation (professional operation level) 12
5.4.1. Signal input parameter „IMP" 12
Value assigment for triggering of the signal input incl. linearisation
5.4.2. General device parameter „FCT" 15
Superior device functions like Hold, Tara, min/max-permanent, setpoint function respectively nominal value function, average determination, brightness control, as well as the control of the digital input and the keyboard configuration
5.4.3. Safety parameter ,,COD" 19
Assignment of user and master code for locking or access to certain parameters like e.g. analog output and alarms, etc.
5.4.4. Analog output parameter „OUT" 20
Analog output functions
5.4.5. Relay functions „REL" 22
Parameter for the definition of the setpoints
5.4.6. Alarm parameter „RLI...RL4* 24
Activator and dependencies of the alarms
5.4.7. Totaliser (Volume metering) „TOT" 26
Parameter for calculation of the sum function
6. Reset to factory settings 27
Reset of the parameter to the factory default settings
7. Alarms / Relays 28
Function principle of the switching outputs
8. Sensor alignment 29
Function diagram for sensors with existing trimming resistor
9. Technical data 30
10. Safety advices 32
11. Error elimination 33

1. Brief description

The panel meter M3-71 is a 5-digit device for direct current/direct voltage signals and a visual threshold value monitoring via the display. The configuration happens via four front keys or via the optional PC software PM-TOOL. An integrated programming interlock prevents unrequested changes of the parameters and can be unlocked again by an individual code. Optional the following functions are available: a supply for the sensor, a digital input for triggering of Hold (Tara) or an analog output for further processing in the equipment.
By use of the two optional galvanic isolated setpoints, free adjustable threshold values can be controlled and reported to a superior master display. The electrical connection is carried out on the back side via plug-in terminals.
Selectable functions like e.g. the request of the min/max-value, an average determination of the measuring signals, a nominal preset respectively setpoint preset, a direct change of threshold value in operation mode and additional measuring supporting points for linearisation complete the modern device concept.

2. Assembly

Please read the Safety advices on page 32 before installation and keep this user manual for future reference.

1. After removing the fixing elements, insert the device.
2. Check the seal to make sure it fits securely.
3. Click the fixing elements back into place and tighten the clamping screws by hand. Then use a screwdriver to tighten them another half a turn.

CAUTION! The torque should not exceed 0.1 Nm!

Change signs of the physical unit before assembly via a channel at the side of the front! The change can only be done from the outside before assembly!

3. Electrical connection

Type M3-7VR5A.0001.S70xD supply of 100-240 VAC

Options:

Type M3-7VR5A.0001.770xD
supply of 24 VDC

Options:

Alternatively to analog output

Connection examples

Below you find three connection examples, which demonstrate some practical applications for devices with voltage or current input, without sensor supply:

M3 in combination with a 2-wire-sensor 4-20 mA

M3 in combination with a
3-wire-sensor 0/4-20 mA

M3 in combination with a
3-wire-sensor 0-10 V

M3 devices

With current respectively voltage input in combination with a 24 VDC sensor supply.

2-wire-sensor 4-20 mA

3-wire-sensor 0-20 mA

3-wire-sensor 0-10 VDC

M3 with digital input in combination with 24 VDC sensor supply

M3 with digital input and external voltage source

4. Function and operation description

Operation

The operation is divided into three different levels.
Menu level (delivery status)
The menu level is for the standard settings of the device. Only menu items which are sufficient to set the device into operation are displayed. To get into the professional level, run through the menu level and parameterise "PROF" under menu item RUM.

Menu group level (complete function volume)
Suited for complex applications as e.g. linkage of alarms, setpoint treatment, totaliser function etc. In this level, function groups which allow an extended parameterisation of the standard settings are availabe. To leave the menu group level, run through this level and parameterise „ULOC,, under menu item RUN.

Parameterisation level:

Parameter deposited in the menu item can here be parameterised. Functions, that can be changed or adjusted, are always signalised by a flashing of the display. Settings that are made in the parameterisation level are confirmed with [P] and thus saved. Pressing the [O]-key („zero-key") leads to a break-off of the value input and to a change into the menu level. All adjustments are saved automatically by the device and it changes into operating mode, if no further key operation is done within the next 10 seconds.

Level	Key	Description
Menu level	P	Change to parameterisation level and deposited values.
	\triangle -	Keys for up and down navigation in the menu level.
	$\triangle \square$	Change into operation mode by pushing both navigation keys at the same time.
Parameterisation level	P	To confirm the changes made at the parameterization level.
	$\Delta \square$	Adjustment of the value / the setting.
	$\triangle \square$	Change into menu level or stop of the value input, by pushing both navigation keys at the same time.
Menu group level	P	Change to menu level
	$\triangle \square$	Keys for up and down navigation in the menu group level.
	$\triangle \square$	Change into operation mode or return into menu level, by pushing both navigation keys at the same time.

Function chart:

Explanation:

P Take-over

 Breakoff by simultaneously pushing of the navigation keys
 Value selection (+)
 Value selection (-)

4.1 Parameterisation software PM-TOOL:

Included in the delivery of the PM-TOOL are the software on CD and an USB-cable with device adapter. The connection happens via a 4-pole micromatch-plug on the back side of the device, to the PC-side the connection happens via an USB plug.

System requirements: PC incl. USB interface
Software: Windows XP, Windows VISTA
With this tool the device configuration can be generated, omitted and safed on the PC. The parameters can be changed via the easy to handle program surface, whereat the operating mode and the possible selection options can be preset by the program.

CAUTION!

During parameterisation with connected measuring signal, make sure that the measuring signal has no mass supply to the programming plug. The programming adapter is galvanic not isolated and directly connected with the PC. Via polarity of the input signal, a current can discharge via the adapter and destroy the device as well as other connected components!

5. Setting up the device

5.1. Switching on

Once the installation is complete, start the device by applying the voltage supply. Before, check once again that all electrical connections are correct.

Starting sequence

For 1 second during the switching-on process, the segment test (8 8 8 8 8) is displayed followed by an indication of the software type and, after that, also for 1 second the software version. After the starting sequence, the device switches to operation/display mode.

5.2. Standard parameterisation: (Flat operation level)

To parameterize the display, press the [P] key in operating mode for 1 second. The display then changes to the menu level with the first menu item TYPE.
Menu level

Menu leve	Parameterization level
	Hysteresis for limit values, HY -1: Default: 00000 The delayed reaction of the alarm is the difference to the threshold value, which is defined by the hysteresis.
$\begin{aligned} & F_{\Perp}- \\ & \nabla \nabla \Delta \end{aligned}$	Function for threshold value undercut / exceedance, $F U-1$: Default: HIGH $\text { HILH } \frac{\Delta}{\nabla} \text { Lavム } \frac{\Delta}{\nabla} P$ A limit value undercut is selected with LOUU (for LOW = lower limit value), a limit value exceedance with HIGH (for HIGH = higher limit value). If e.g. limit value 1 is on a threshold leve of 100 and allocated with function HIGH, an alarm is activated by reaching the threshold level. If the threshold value was allocated to LOU, an alarm will be activated by undercutting the threshold value, as long as the hysteresis is zero.
	Threshold values / limits, Li-z: Default: 3000 This value defines the threshold, that activates/deactivates an alarm.
$$	Hysteresis for limit values, HY -2: Default: 00000 The delayed reaction of the alarm is the difference to the threshold value, which is defined by the hysteresis.
	Function for threshold value undercut / exceedance, FU-ट: Default: HIGH A limit value undercut is selected with LOUU (for LOW = lower limit value), a limit value exceedance with HIGH (for HIGH = higher limit value). If e.g. limit value 1 is on a threshold leve of 100 and allocated with function $\boldsymbol{H I G H}$, an alarm is activated by reaching the threshold level. the threshold value was allocated to LOW, an alarm will be activated by undercutting the threshold value, as long as the hysteresis is zero.

Menu level	Parameterization level	
$\begin{aligned} & \text { HEDGl} \\ & \nabla \triangle \Delta \end{aligned}$	User code (4-digit number-combination, free available), U.CODE: Default: 0000 If this code was set (>0000), all parameters are locked for the user, if $L O C$ has been selected before under menu item rum. By pressing [P] for 3 seconds in operation mode, the display shows $C O D E$. The U.CODE needs to be entered to get to the reduced number of parameter sets. The code has to be entered befor each parameterisation, until the R.CODE (Master code) releases all parameters again.	
$\begin{aligned} & \text { R.Cod } \\ & \\| \nabla \Delta \mid \end{aligned}$	Master code (4-digit number-combination, free available), R.CODE: Default: 1234 All parameters can be released with this code, after LOC has been activated under menu item RUM. By pressing [P] for 3 seconds in operation mode, the display shows CODE and enables the user to reach all parameters by entering the R.CODE. Under RUM the parameterisation can be activated permanently by selecting $U L O C$ or PROF, thus at an anew pushing of $[P]$ in operation mode, the code needs not to be entered again.	
5.3. Programming interlock „RUM4		
	Activation / deactivation of the programming lock or completion of the standard parameterization with change into menu group level (complete function range), RUM: Default: ULOC $\text { HLOL } \frac{\Delta}{\nabla} \square \text { LDC } \frac{\Delta}{\nabla} \text { PraF } \frac{\Delta}{\nabla} \mathrm{P}$ Choose between the deactivated key lock ULOC (works setting) and the activated key lock LOC, or the change into the menu group level PROF with the navigation keys [$\mathbf{\Delta}$] [$\mathbf{\nabla}$]. Confirm the selection with [P]. After this, the display confirms the settings with "- . . - -", and automatically switches to operating mode. If LOC was selected, the keyboard is locked. To get back into the menu level, press [P] for 3 seconds in operating mode. Now enter the CODE (works setting 123 ${ }^{4}$) that appears using [$\mathbf{\Delta}$] [\mathbf{V}] plus [P] to unlock the keyboard. Fail appears if the input is wrong. To parameterize further functions, PROF needs to be set. The device confirms this setting with „- - - ,, and changes automatically in operation mode. By pressing [P] for approx. 3 seconds in operation mode, the first menu group IMP is shown in the display and thus confirms the change into the extended parameterisation. It remains activated as long as ULOC or LOC is entered in menu group RUM.	

5.4. Extended parameterisation (Professional operation level)

5.4.1. Signal input parameters

Menu leve	Parameterization level
	Selection of the input signal, TYPE: Default: SEMS.U Available are several measuring input options: $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$ or $0-10 \mathrm{VDC}$ signals as the works calibration (without application of the sensor signal) and SENSU (Voltage) or SEMSR (Current) as sensor calibration (with applied measuring signal). Confirm the selection with [P] and the display switches back to menu level.
	Setting the end value of the measuring range, EMD: Default: 10000 Set the end value from the smallest to the highest digit with [\mathbf{A}] [$\mathbf{\nabla}$] and confirm each digit with [P]. A minus sign can only be parameterized on the leftmost digit. After the last digit, the display switches back to the menu level. If SENS was selected as input option, one can only select between MOCR and CRL. With MOCR, only the previously set display value is taken over, and with CRL, the device takes over both the display value and the analog input value.
	Setting the start/offset value of the measuring range, OFFS: Default: 0 Enter the start/offset value from the smallest to the highest digit [\mathbf{A}] [\mathbf{V}] and confirm each digit with [P]. After the last digit the display switches back to the menu level. If SEMS was selected as input option, one can only select between MOCR and CRL. With MOCR, only the previously set display value is taken over, and with CRL, the device takes over both the display value and the analog input value.
$\begin{aligned} & \square \square 亡 \\ & \forall \nabla \square \end{aligned}$	Setting the decimal point, $D O T$: Default: 0 The decimal point on the display can be moved with [\mathbf{A}] [$\mathbf{\nabla}$] and confirmed with [P]. The display then switches back to the menu level again.

	Parameterization lev		
	Setting up the display time, $5 E[$: Default: 1.0 \square 吅: \square 00.9 then 010 \square 10.0 P The display time is set with [\mathbf{A}][V]. The display moves up in increments of 0.1 up to 1 second and in increments of 1.0 up to 10.0 seconds. Confirm the selection by pressing the [P] button. The display then switches back to the menu level again.		
	Rescaling the measuring input values, EMDA: Default: 10000 With this function, rescale the input value of e.g. 19.5 mA (works setting) without applying a measuring signal. If sensor calibration has been selected, these parameters are not available.		
	Rescaling the measuring input values, OFFR: Default: 0 With this function, rescale the input value of e.g. 3.5 mA (works setting) without applying a measuring signal. If sensor calibration has been selected, these parameters are not available.		
	Setting up the tare/offset value, TRRR: Default: 0 The given value is added to the linerarized value. In this way, the characteristic line can be shifted by the selected amount.		
	Setting up the balance point, RDJ.PT: Default: 08000 The balance point for the final value can be chosen from the measuring range by SEMS.U with $0 \ldots 10 \mathrm{~V}$ or SEMS.R with $0 \ldots 20 \mathrm{~mA}$ in $\%$. The preset 80.000% result from the widespread detuning of the melt pressure sensors.		
	Setting up the physical unit, UMIIT: Default: MO $\left[\backslash \frac{\Delta}{\nabla} F \left\lvert\, \frac{\Delta}{\nabla} L \stackrel{\Delta}{\nabla} R \frac{\Delta}{\nabla} U \frac{\Delta}{\nabla} L \frac{\Delta}{\nabla} \square \operatorname{no~} \frac{\Delta}{\nabla} P\right.\right.$ Choose between the above shown physical units. It will be displayed on the 5th digit of the display.		

Menu level	Parameterization level
$\begin{aligned} & \text { 5PLL } \\ & \nabla \nabla \triangle \mid \end{aligned}$	Number of additional setpoints, SPCT: Default: 00 \square \square 0 \square 30 additional setpoints can be defined to the initial value and final value, so linear sensor values are not linearised. Only activated setpoint parameters are displayed.
$\left.\begin{array}{ll} \hline-1 & 5 \\ \hline & \square \end{array}\right]$	Display values for setpoints, $D 15.01$... DIS.30: Under this parameter setpoints are defined according to their value. At the sensor calibration, like at final value/offset, one is asked at the end if a calibration shall be activated.
$1 \text { пP.D }$	Analog values for setpoints, IMP. 01 ... IMP.30: \square P The setpoints are always set according to the selected input signal. The desired analog values can be freely parameterised in ascending order.
	Device undercut, DIUUMD: Default: -19999 With this function the device undercut (\qquad) can be defined on a definite value. Exception is input type 4-20 mA, it already shows undercut at a signal $<1 \mathrm{~mA}$, so a sensor failure is marked.
	Display overflow, DIDUE: Default: 99999 With this function the display overflow (-----) can be defined on a definite value.
$\begin{aligned} & \quad r E L \\ & \|\nabla \Delta\| \end{aligned}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level .-IMP-".

5.4.2. General device parameters

| Menu level | Parameterization level |
| :--- | :--- | :--- |
| Pisplay time, DISEC : | |

Menu leve	Parameterization level
$\begin{aligned} & \text { コEr } \\ & \boxed{\Delta}, \end{aligned}$	Zero point slowdown, ZERO: Default: 00 \square At the zero point slowdown, a value range around the zero point can be preset, so the display shows a zero. If e.g. 10 is set, the display would show a zero in the value range from -10 to +10 ; below continue with -11 and beyond with +11 . The maximum adjustable range of value is 99 .
$\begin{aligned} & \operatorname{En} \square \\ & \nabla \triangle \Delta \end{aligned}$	Solid contstant value, COMST: Default: 0 The constant value can be evaluated like the current measurand via the alarms or the analog output. The decimal place cannot be changed for this value and is taken over from the current measurand. So, with this value a setpoint generator can be realised via the analog output. Furthermore it can be used as calculated difference. At this the constant value needs to be subtracted from the current measurand and the difference is evaluated in the alerting or via the analog output. Thus regulation can be displayed quite easy with this parameterisation.
$\begin{aligned} & \square \square \pi \Pi \\ & \nabla \triangle \square \end{aligned}$	Minimum constant value, com.m: Default: -19999 The minimum constant value is selected and adjusted from the smallest to the highest digit with [$\mathbf{\Delta}$] [\mathbf{V}] and confirmed digit per digit with [P]. A minus sign can only be adjusted on the leftmost digit. After the last digit the display changes back into menu level.
■am	Maximum constant value, CON.MR: Default: 99999 The maximum constant value is selected and adjusted from the smallest to the highest digit with [$\mathbf{\Delta}$] [\mathbf{V}] and confirmed digit per digit with [P]. A minus sign can only be adjusted on the leftmost digit. After the last digit the display changes back into menu level.
$\begin{gathered} -1 i \square \\ \nabla \nabla \square \end{gathered}$	Display, DISPL: Default: RCTUR With this function the current measurand, the min-value, max-value, the totaliser, the processcontrolled hold-value, the sliding average value, the constant value or the difference between constant value and current value can be allocated to the display. With [P] the selection is confirmed and the device changes into menu level.

Menu level	Parameterisation level
$\begin{aligned} & \llcorner\text { IEHL } \\ & \nabla \triangle \Delta \end{aligned}$	Brightness control, LIGHT: Default: 15 The brightness of the display can be adjusted in 16 levels from $00=$ very dark to $15=$ very bright via this parameter or alternatively via the navigation keys from the outside. During the start of the device the level that is deposited under this parameter will always be used, even though the brightness has been changed via the navigation keys in the meantime.
$\begin{aligned} & \text { FLRSH } \\ & \nabla \triangle \Delta \mid \end{aligned}$	Display flashing, FLRSH: Default: MO A display flashing can be added as additional alarm function either to single or to a combination of off-limit condition. With MO, no flashing is allocated.
$\begin{aligned} & \text { LR5L } \\ & \uparrow \nabla \Delta \mid \end{aligned}$	Assignment (deposit) of key functions, TAST: Default: MO For the operation mode, special functions can be deposited on the navigation keys [\mathbf{A}] [\mathbf{V}], in particular this function is made for devices in housing size $48 \times 24 \mathrm{~mm}$ which do not have a 4th key ([O]-key). If the min/max-memory is activated with EHTR, all measured min/max-values are saved during operation and can be recalled via the navigation keys. The values get lost by restart of the device. If the threshold value correction $L 1.12$ or $L 1.34$ is choosen, the values of the threshold can be changed during operation without disturbing the operating procedure. With TRRA the device is set temporarily on a parameterised value. The device acknowledges the correct taring with 00000 in the display. SET.TR switches into the offset value and can be adjusted via the navigation keys. Via TOTRL the current value of the totaliser can be displayed for approx. 7 seconds, after this the device switches back on the parameterised display value. If TOT.RE is deposited, the totaliser can be set back by pressing the navigation keys [4][V], the device acknowledges this with 00000 in the display. By allocation on EHT.RE the min/max-memory is deleted. At RCTUR the measuring value is shown for approx. 7 seconds, after this the device switches back on the parameterised display value. With LIGHT the brightness of the display is adjusted. This setting is not safed and gets lost at a restart fo the device. Via selection L1.1, L1.1-2, LI.1-3, Ll.1-4 threshold values can be addressed via the navigation keys; they can be changed digit per digit or taken over by pushing the [P]-key. The adjustment is taken over directly, an excisting limit value monitoring and the current measurement will not be influenced by this. If 10 is selected, the navigation keys are without any function in the operation mode.

Menu level	Parameterization level
	Special function digital input, DIG.IM: Default: MO For operating mode, special functions can be realised via the digital input. This function is actuated by pressing the key. With TRRR the device is tared to zero and saved permanently as offset. The display acknowledges this with 00000 in the display. SET.TR switches into the offset value and can be changed via the navigation keys. Via TOTRL the current value of the totaliser can be displayed for approx. 7 seconds, after this the device switches back on the parameterised display value. If TOT.RE is deposited, the totaliser can be set back by pressing the navigation keys, the device acknowledges this with 00000 in the display. EHT.RE deletes the $\mathrm{min} / \mathrm{max}$-memory. If $H O L D$ has been selected, the moment can be hold constant by triggering the digital input, and is updated by releasing the key. Advice: HOLD can only be activated, if HOLD was selected under parameter DISPL. RCTUR shows the measuring value for approx. 7 seconds, after this the device switches back on the parameterised display value. The same applies to RVG, here the sliding average value is displayed. A sensor calibration is done by triggering the digital input via SE.CRL, the flow diagram is shown in Chapter 8. The constant value CONST can be recalled via the digital input, or changed digit per digit. At RL-7...RL-4 there can be set an output and therewith e.g. a setpoint adjustment can be done. If $N O$ is selected, the digital input is without any function in the operation mode.
$\begin{aligned} & \square \mid E E L \\ & \|\nabla \Delta\| \end{aligned}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level ..-FCT-".

5．4．3．Safety parameters

Menu level	Parameterization level
$\begin{aligned} & \text { H.La』E } \\ & \qquad \nabla \Delta \mid \end{aligned}$	User code U．CODE： Default： 0000 Via this code，reduced sets of parameters can be released．A change of the U．CODE can be done via the correct input of the R．CODE（master code）．
$\begin{aligned} & \text { RILロGE } \\ & \|\nabla \Delta\| \end{aligned}$	Master code，R．CODE： Default： 1234 By entering R．CODE，the device will be unlocked and all parameters are released．
ButLE	Release／lock analog output parameters，OUT．LE： Default：RLL Analog output parameters can be locked or released for the user： －EM－OF：the initial or final value can be changed in operation mode －OUT．EO：the output signal can be changed from e．g．0－20 mA to 4－20 mA or 0－10 VDC －RLL：analog output parameters are released －MO：all analog output parameters are locked
$\begin{aligned} & \text { RLLEEU } \\ & \|\nabla \Delta\| \mid \end{aligned}$	Release／lock alarm parameters，RL．LEU： Default：RLL LInt RLrill RLL This parameter describes the user release／user lock of the alarm： －LIMIT：here only the range of value of the threshold values 1－4 can be changed －RLRM．L：here the range of value and the alarm trigger can be changed －RLL：all alarm parameters are released －MO：all alarm parameters are locked

Menu level	Parameterization level
- LE	Back to menu group level, RET:
$\uparrow \nabla$	With [P] the selection is confirmed and the device changes into menu group level ${ }_{\mathrm{n}}$-COD-".

5.4.4. Analog output parameters

Menu level	Parameterisation level
$\begin{aligned} & \text { BLEPL } \\ & \|\nabla \Delta\| \end{aligned}$	Selection reference analog output, OUTPT: Default: RcTu The analog output signal can refer to different functions, in detail this are the current measurand, min-value, max-value, totaliser/sum-function, the sliding average value, the constant value or the difference between the current value and the constant value. If HOLD is selected the signal of the analog output will be hold and processed just after deactivation of HOLD. With [P] the selection is confirmed and the device changes into menu level.
$\begin{aligned} & \text { BெE.にB } \\ & \|\nabla \Delta\| \mid \end{aligned}$	Selection analog output, OUT.RR: Default: 4-20 $0-10 \frac{\Delta}{\nabla} \square 0-20 \frac{\Delta}{\nabla} \square-20 \underset{\nabla}{\nabla} P$ Available are 3 output signals: $0-10 \mathrm{VDC}, 0-20 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$. With this function the demanded signal can be selected.
$\begin{aligned} & \text { BLEE } \\ & \|\nabla \Delta\| \end{aligned}$	Setting up the final value of the analog output, OUT.EM: Default: 10000 The final value can be adjusted from the smallest to the largest digit with [$\mathbf{\Delta}$] [\mathbf{V}]. Confirm each digit with $[P]$. A minus sign can only be parameterized on the leftmost digit. After the last digit, the display switches back to the menu level.

Menu level	Parameterization level
But.ロF \square	Setting the initial value of the analog output, oUT.OF: Default: 00000 The initial value is adjusted from the smallest to the highest digit with [$\mathbf{\Delta}$] [\mathbf{V}] and confirmed digit per digit with [P]. A minus sign can only be parameterized on the leftmost digit. After the last digit the device changes back into menu level.
$\begin{aligned} & \square F L \square L \\ & \|\nabla \triangle \Delta\| \end{aligned}$	Overflow behaviour, O.FLOU: Default: EDGE EdしE Lo.End $\frac{\Delta}{\nabla}$ La.DFF To recognise and evaluate faulty signals, e.g. by a controller, the overflow behaviour of the analog output can be defined. As overflow can be seen either EDGE, that means the analog output runs on the set limits e.g. 4 and 20 mA , or TO.OFF (input value smaller than initial value, analog output switches on e.g. 4 mA), TO.END (higher than final value, analog output switches on e.g. 20 mA). If TO.MIM or TO.MRX is set, the analog output switches on the least significant or leftmost possible binary value. This means that values of e.g. $0 \mathrm{~mA}, 0 \mathrm{VDC}$ or values higher than 20 mA or 10 VDC can be reached. With [P] the selection is confirmed and the device changes into menu level.
$\begin{aligned} & \square-E L \\ & \nabla \nabla \Delta \end{aligned}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level ..-OUT-".

5.4.5. Relay functions

Menu level	Parameterization level		
$\begin{aligned} & \text { Laク- } \\ & \|\nabla \triangle \Delta\| \end{aligned}$	Alarms for re Default： 8.1 R． 1 The allocation alarms can be level．	ay 1, com-1: R． 2 of the alarms to relay chosen．With［P］the	\qquad R． 1234 happens via this parameter，one alarm or a group of ction is confirmed and the device changes into menu
$\begin{aligned} & -E L-\Xi \\ & \|\nabla \Delta\| \end{aligned}$	Alarm relay 2 Default：RL－2 RL－ LaEi ［RL．B Each setpoint at activated a available in th other selected activated／deac front of the de the semi－autom sensor calibra final value．W	REL－2： RL BF LRL．E optional）can be link arms RLI／4 or deacti menu level LOG－1 and functions，these two fivated，in this case ice．The parameters atic calibration（Cha ion，at CRL．OF during $[\mathrm{P}]$ the selection is	RL－n5 \qquad RL－nB －Bn ［RL P via 4 alarms（by default）．This can either be inserted d alarms RLMI／4．If LOGIC is selected，logical links are －1．Access to these two menu levels is via LOGIC，at all meters are overleaped．Via OM／OFF the setpoints can be output and the setpoint display are set／not set on the CRL．OF and CRL．EM can only be used in accordance with 8．Sensor alignment）．At CRL the relay switches during calibration and at CRL．EM during the calibration of the rmed and the device changes into menu level．
$\begin{aligned} & \operatorname{LaU}-己 \\ & \|\nabla \Delta\| \end{aligned}$	Logic relay 2 Default：$O R$ The switching these function selected unde	LOG－2： behaviour of the rela with inclusion of RL－ REL－1．	Rind nRnd fined via a logic link，the following schema describes AL－2：This parameter can only be selected if LOGIC was
	ロー	A1 v A2	As soon as a selected alarm is activated，the relay operates．Equates to operating current principle．
	nar	$\overline{A 1 \vee A 2}=\overline{A 1} \wedge$	The relay operates only，if no selected alarm is active．Equates to quiescent current principle．
	日nd	$\mathrm{A} 1 \wedge \mathrm{a} 2$	The relay operates only，if all selected alarms are active．
	の日のロ	$\overline{\overline{A 1 \wedge A 2}}=\overline{A 1} \vee \overline{A 2}$	As soon as a selected alarm is not activated，the relay operates．
	With［P］the selection is confirmed and the device changes into menu level．		

5.4.6. Alarm parameters

Menu level

Menu level	Parameterization level
	Threshold values / limit values, $L 1-1$: Default: 2000 The limit value defines the threshold, that activates/deactivates an alarm.
$\begin{aligned} & \mid H \Xi-i \\ & \|\nabla \Delta\| \end{aligned}$	Hysteresis for threshold values, $\mathrm{Hy}-\mathrm{l}$: Default: 00000 $1]$ \square The delayed reaction of the alarm is the difference to the threshold value, which is defined by the hysteresis.
$\begin{aligned} & \mid F_{\omega}-i \\ & \|\nabla \Delta\| \end{aligned}$	Function for threshold value undercut / exceedance, $F U-1$: Default: HIGH A limit value undercut is selected with LOUU (for LOW = lower limit value), a limit value exceedance with HIGH (for HIGH = higher limit value). If e.g. limit value 1 is on a threshold level of 100 and allocated with function HIGH, an alarm is activated by reaching the threshold level. If the threshold value was allocated to LOW, an alarm will be activated by undercutting the threshold value, as long as the hysteresis is zero.
$\begin{aligned} & \operatorname{Lan}-1 \\ & \|\nabla \Delta\| \end{aligned}$	Switching-on delay, TOM-: Default: 000 Preset a delayed switching-on of 0-100 seconds for limit value 1 .
$\begin{aligned} & \text { LaF-i } \\ & \|\nabla \Delta\| \end{aligned}$	Switching-off delay, Tof-l: Default: 000 Preset a delayed switching-off of 0-100 seconds for limit value 1
$\begin{aligned} & \square-E L \\ & \|\nabla \Delta\| \end{aligned}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level ..-RLI-".

The same applies to -RLZ- to -RL4-.

5．4．7．Totaliser（Volume metering）

Menu level	Parameterization level
$\begin{aligned} & \text { LaLRL } \\ & \|\nabla \Delta\| \end{aligned}$	Totaliser state，TOTRL： Default：OFF $\square F F \frac{\Delta}{\nabla} \text { StERd } \frac{\Delta}{\nabla} \text { LEMP } \frac{\Delta}{\nabla} P$ The totaliser realizes measurements on a time base of e．g．I／h，at this the scaled input signal is integrated by a time and steadily（select STERD）or temporarily（select TEMP）saved．Select the constant storage for consumption measurements and the quick storage for frequently filling processes．During the constant storage STERD the current sum value is saved at each totaliser reset．Furthermore it is saved every 30 minutes in the not－quick storage of the device．If OFF is selected，the function is deactivated．With［P］the selection is confirmed and the device changes into menu level．
$\begin{gathered} \text { L.LRSE } \\ \|\nabla \Delta\| \end{gathered}$	Time base，T．BRSE： Default：SEC \square 5EL ｜ \square Min \square hour \square P Under this parameter the time base of the measurement can be preset in seconds，minutes or hours．
$\begin{aligned} & F \cap \subset L \square \\ & \|\nabla \triangle\| \end{aligned}$	Totaliser factor，FRCTO： Default：IED At this the factor（1E0．．．1E6）respectively the divisor for the internal calculation of the measuring value is assigned．
$\begin{aligned} & \text { LロL.』L } \\ & \|\nabla \Delta\| \end{aligned}$	Setting up the decimal point for the totaliser，TOT．DT： Default： 0 $0.0000 \stackrel{\Delta}{\nabla}$ 『 The decimal point of the device can be adjusted with the navigation keys［ $\mathbf{\Delta}$ ］［ $\mathbf{\nabla}$ ］．With［P］the selection is confirmed and the device changes into menu level．

Menu level	Parameterization level

Programming interlock, RUM:

Description see page 11, menu level RUM

6. Reset to factory settings

To return the unit to a defined basic state, a reset can be carried out to the default values.

The following procedure should be used:

- Switch off the power supply
- Press button [P]
- Switch on voltage supply and press [P]-button until" appears in the display.

With reset, the default values of the program table are loaded and used for subsequent operation. This sets the device back to the state in which it was supplied.

Caution! All application-related data are lost.

7. Alarms / Relays

This device has 4 virtual alarms that can monitor one limit value in regard of an undercut or exceedance. Each alarm can be allocated to an optional relay output S1-S2; furthermore alarms can be controlled by events like e.g. Hold or min/max-value.

Function principle of alarms / relays

Alarm / Relay \mathbf{x}	Deactivated, instantaneous value, $\mathrm{min} / \mathrm{max}$-value, Hold-value, totaliser value, sliding average value, constant value, difference between instantaneous value and constant value or an actuation via the digital input
Switching threshold	Threshold / limit value of the change-over
Hysteresis	Broadness of the window between the switching thresholds
Working principle	Operating current / Quiescent current

Operating current

By operating current the alarm S1-S2 is off below the threshold and on on reaching the threshold.

Quiescent current

By quiescent current the alarm S1-S2 is on below the threshold and switched off on reaching the threshold.

Switching-on delay

The switching-on delay is activated via an alarm and e.g. switched 10 seconds after reaching the switching threshold, a short-term exceedance of the switching value does not cause an alarm, respectively does not cause a switching operation of the relay. The switching-off delay operates in the same way, keeps the alarm / the relay switched longer for the parameterised time.

8. Sensor calibration offset / final value

The device is equipped with a semi-automatic sensor calibration (SEMSU/SEMSR). A switching output operates the trimming resistor, which exists in some sensors. An adjustment of offset and final value takes place, after which the sensor can be used directly. Depending on parameterisation, the calibration can be realized via the 4th key or via the digital input. It is possible to key during the calibration steps. So, reference signals can be connected manually. However the calibration will be interrupted after 30 seconds.

9. Technical data

Housing				
Dimensions	$48 \times 24 \times 90$ mm (BxHxD)			
	$48 \times 24 \times 109 \mathrm{~mm}(\mathrm{BxHxD})$ incl. plug-in terminal			
Panel cut-out	$45.0^{+0.6} \times 22.2+0.3 \mathrm{~mm}$			
Wall thickness	up to 3 mm			
Fixing	screw elements			
Material	PC Polycarbonate, black, UL94V-0			
Sealing material	EPDM, 65 Shore, black			
Protection class	standard IP65 (Front side), IP00 (Back side)			
Weight	approx. 200 g			
Connection	plug-in terminal; wire cross section up to $2.5 \mathrm{~mm}^{2}$			
Display				
Digit height	10 mm			
Segment colour	red (optional green, yellow or blue)			
Range of display	-19999 to 99999			
Setpoints	one LED per setpoint			
Overflow	horizontal bars at the top			
Underflow	horizontal bars at the bottom			
Display time	0.1 to 10.0 seconds			
Input	Measuring range	Ri	Measuring error	Digit
min. -22...max. 24 mA	0/4-20 mA	$\sim 100 \Omega$	0.1 \% of measuring range	± 1
min. -12...max. 12 VDC	0-10 VDC	$\sim 200 \mathrm{k} \Omega$	0.1 \% of measuring range	± 1
Digital input	<2.4 V OFF, 10 V ON, max. $30 \mathrm{VDC} ; \mathrm{R}_{\mathrm{I}} \sim 5 \mathrm{k} \Omega$			
Accuracy				
Temperature drift	100 ppm / K			
Measuring time	$0.1 \ldots 10.0$ seconds			
Measuring principle	U/F-conversion			
Resolution	approx. 18 bit at 1 second measuring time			
Output				
Sensor supply	$24 \mathrm{VDC} / 50 \mathrm{~mA}$; $10 \mathrm{VDC} / 20 \mathrm{~mA}$			
Analog output	0/4-20 mA / burden $\leq 500 \Omega ; 0-10 \mathrm{VDC} \mathrm{/} \mathrm{burden} \geq 10 \mathrm{k} \Omega$, 16 Bit			
Switching outputs	2 PhotoMos (Closer)		$30 \mathrm{VDC} / \mathrm{AC}, 0.4 \mathrm{~A}$	
Power pack	$100-240$ VAC $50 / 60 \mathrm{~Hz} / \mathrm{DC} \pm 10 \%$ (max. 5 VA) 24 VDC $\pm 10 \%$ galv. isolated (max. 4 VA)			
Memory	EEPROM			
Data life	≥ 100 years at $25^{\circ} \mathrm{C}$			

Ambient conditions		
Working temperature	$0 \ldots 50^{\circ} \mathrm{C}$	
Storing temperature	$-20 \ldots 80^{\circ} \mathrm{C}$	
Weathering resistance	$0-80 \%$ relative humidity on years average without dew	
EMV	EN 61326, EN 55011	
CE-sign	Conformity according to directive 2014/30/EU	
Safety standard	According to low voltage directive 2014/35/EU EN 61010; EN 60664-1	

10. Safety advices

Please read the following safety advices and the assembly in chapter 1 before installation and keep it for future reference.

Proper use

The M3-71-device is designed for the evaluation and display of sensor signals.

Danger! Careless use or improper operation can result in personal injury and/or can damage the equipment.

Control of the device

The panel meters are checked before dispatch and sent out in perfect condition. Should there be any visible damage, we recommend close examination of the packaging. Please inform the supplier immediately of any damage.

Installation

The M3-71-device must be installed by a suitably qualified specialist (e.g. with a qualification in industrial electronics).

Notes on installation

- There must be no magnetic or electric fields in the vicinity of the device, e.g. due to transformers, mobile phones or electrostatic discharge.
- The fuse rating of the supply voltage should not exceed a value of 0.5A N.B. fuse!
- Do not install inductive consumers (relays, solenoid valves etc.) near the device and suppress any interference with the aid of RC spark extinguishing combinations or free-wheeling diodes.
- Keep input, output and supply lines separate from one another and do not lay them parallel with each other. Position "go" and "return lines" next to one another. Where possible use twisted pair. This way best measuring results can be received.
- Screen off and twist sensor lines. Do not lay current-carrying lines in the vicinity. Connect the screening on one side on a suitable potential equaliser (normally signal ground).
- The device is not suitable for installation in areas where there is a risk of explosion.
- Any electrical connection deviating from the connection diagram can endanger human life and/or can destroy the equipment.
- The terminal area of the device is part of the service. Here electrostatic discharge needs to be avoided. Attention! High voltages can cause dangerous body currents.
- Galvanic isolated potentials within one complex need to be placed on an appropriate point (normally earth or machines ground). So, a lower disturbance sensibility against impacted energy can be reached and dangerous potentials, that can occur on long lines or due to faulty wiring, can be avoided.

11. Error elimination

	Error description	Measures
1.	The unit permanently indicates overflow. - The input has a very high measurement, check the measuring circuit. - With a selected input with a low voltage signal, it is only connected on one side or the input is open. - Not all of the activated supporting points are parameterised. Check if the relevant parameters are adjusted correctly.	
2.	The unit permanently shows underflow. - The input has a very low measurement, check the measuring circuit. - With a selected input with a low voltage signal, it is only connected on one side or the input is open. - Not all of the activated supporting points are parameterised. Check if the relevant parameters are adjusted correctly.	
3.	The word HELP lights up in the 7-segment display.	- The unit has found an error in the configuration memory. Perform a reset on the default values and reconfigure the unit according to your application.
4.	Program numbers for parameterising of the input are not accessible.	- Programming lock is activated - Enter correct code
5.	Err1 lights up in the 7-segment display	- Please contact the manufacturer if errors of this kind occur.
6.	The device does not react as expected.	- If you are not sure if the device has been parameterised before, then follow the steps as written in Chapter 6. and set it back to its delivery status.

