User manual M3

Thermocouple type K, B, S, N, E, T, R, L, J

Technical features:

- red display from -19999... 99999 digits (optional green, orange or blue display)
- minimal installation depth: 90 mm without plug-in terminal
- adjustment via factory default or directly on the sensor signal
- min/max-value recording
- display flashing at threshold exceedance / undercut
- Hold-function
- permanent min/max-value recording
- volume measuring (totaliser)
- mathematical functions like reciprocal value, square root, square, rounding
- programming interlock via access code
- protection class IP65 at the front
- plug-in screw terminal
- optional: 2 PhotoMos outputs
- optional: sensor supply or analog output
- optional: digital output
- accessories: pc-based configuration kit PM-TOOL incl. CD \& USB adapter for devices without keypad, for a simple adjustment of standard devices

Identification

STANDARD-TYPES	ORDER NUMBER
Thermocouple	M3-7TR5A.040X.S70xD
Housing size: $48 \times 24 \mathrm{~mm}$	M3-7TR5A.040X.770xD

Options - breakdown of order code:

Please state physical unit by order.

Contents

1. Brief description 2
2. Assembly 2
3. Electrical connection 3
4. Functions and operation description 4
4.1. Programming software PM-TOOL 5
5. Setting up the device 6
5.1. Switching on 6
5.2. Standard parameterisation (flat operation level) 6
Value assigment for triggering of the signal input
5.3. Programming interlock .,RUM" 9
Activation/Deactivation of the programming interlock or change into the professional level respectively back into the flat operation level
5.4. Extended parameterisation (professional operation level) 10
5.4.1. Signal input parameter „IMP" 10
Value assigment for triggering of the signal input
5.4.2. General device parameter „FCT، 12
Superior device functions like min/max permanent, brightness control, as well as the control of the keyboard configuration
5.4.3. Safety parameter „COD" 14
Assignment of user and master code for locking or access to certain parameters like e.g. analog output and alarms, etc.
5.4.4. Analog output parameter „OUT" 15
Analog output functions
5.4.5. Relay functions „REL" 17
Parameter for the definition of the setpoints
5.4.6. Alarm parameter „RLI...RLY 19
Activator and dependencies of the alarms
6. Reset to factory settings 21
Reset of the parameter to the factory default settings
7. Alarms / Relays 22
Function principle of the switching outputs
8. Technical data 23
9. Safety advices 25
10. Error elimination 26

1. Brief description

The panel meter instrument M3-3T is a 5 -digit device for Thermocouple and a visual threshold value monitoring via the display. The configuration happens via four keys at the front or by the optional PC software PM-TOOL. The integrated programming interlock prevents unrequested chnages of parameters and can be unlocked again with an individual code. Optional available is one analog output for further evaluating in the unit.
With help of the two galvanic isolated setpoints (optional), free adjustable limit values can be controlled and reported to a superior master display.
The electrical connection is done via plug-in terminals on the back side.
Selcetable functions like e.g. the recall of the $\mathrm{min} / \mathrm{max}$-value, a direct threshold value regulation during operation mode, complete the modern device concept.

2. Assembly

Please read the Safety advices on page 25 before installation and keep this user manual for future reference.

1. After removing the fixing elements, insert the device.
2. Check the seal to make sure it fits securely.
3. Click the fixing elements back into place and tighten the clamping screws by hand. Then use a screwdriver to tighten them another half a turn.

CAUTION! The torque should not exceed 0.1 Nm!

Change signs of the physical unit before assembly via a channel at the side of the front! The change can only be done from the outside before assembly!

3. Electrical connection

Type M3-7TR5A.040X.770xD
supply of 24 VDC

Options:

alternatively to analog output

Type M3-7TR5A.040X.S70xD
supply of 100-240 VAC

Options:

4. Function and operation description

Operation

The operation is divided into three different levels.
Menu level (delivery status)
The menu level is for the standard settings of the device. Only menu items which are sufficient to set the device into operation are displayed. To get into the professional level, run through the menu level and parameterise "PROF" under menu item RUM.

Menu group level (complete function volume)
Suited for complex applications as e.g. linkage of alarms, setpoint treatment, totaliser function etc. In this level function groups which allow an extended parameterisation of the standard settings are availabe. To leave the menu group level, run through this level and parameterise „ULOC,, under menu item RUM.

Parameterisation level:

Parameter deposited in the menu item can here be parameterised. Functions, that can be changed or adjusted, are always signalised by a flashing of the display. Settings that are made in the parameterisation level are confirmed with [P] and thus saved. Pressing the [O]-key („zero-key") leads to a break-off of the value input and to a change into the menu level. All adjustments are saved automatically by the device and it changes into operating mode, if no further key operation is done within the next 10 seconds.

Level	Key	Description
Menu level	P	Change to parameterisation level and deposited values.
	$\Delta \nabla$	Keys for up and down navigation in the menu level.
	$\Delta \square$	Change into operation mode by pushing both navigation keys at the same time.
Parameterisation level	P	To confirm the changes made at the parameterization level.
	\triangle	Adjustment of the value / the setting.
	$\triangle \square$	Change into menu level or stop of the value input, by pushing both navigation keys at the same time.
Menu group level	P	Change to menu level
	\triangle -	Keys for up and down navigation in the menu group level.
	$\triangle \square$	Change into operation mode or return into menu level, by pushing both navigation keys at the same time.

Function chart:

Underline:

(P) Takeover
(O) Stop
(Δ Value selection (+)

- Value selection (-)

4.1 Parameterisation software PM-TOOL:

Included in the delivery of the PM-TOOL are the software on CD and an USB-cable with device adapter. The connection happens via a 4-pole micromatch-plug on the back side of the device, to the PC-side the connection happens via an USB plug.

System requirements: PC incl. USB interface
Software: Windows XP, Windows VISTA
With this tool the device configuration can be generated, omitted and saved on the PC. The parameters can be changed via the easy to handle program surface, whereat the operating mode and the possible selection options can be preset by the program.

CAUTION!

During parameterisation with connected measuring signal, make sure that the measuring signal has no mass supply to the programming plug. The programming adapter is galvanic not isolated and directly connected with the PC. Via polarity of the input signal, a current can discharge via the adapter and destroy the device as well as other connected components!

5. Setting up the device

5.1. Switching on

Once the installation is complete, start the device by applying the voltage supply. Before, check once again that all electrical connections are correct.

Starting sequence

For 1 second during the switching-on process, the segment test ($\left.\begin{array}{llll}8 & 8 & 8 & 8\end{array}\right)$ is displayed followed by an indication of the software type and, after that, also for 1 second the software version. After the starting sequence, the device switches to operation/display mode.

5.2. Standard parameterisation: (Flat operation level)

To parameterise the display, press the [P]-key in operating mode for 1 second. The display then changes to the menu level with the first menu item TYPE.

| Menu level | Parameterisation level |
| :--- | :--- | :--- |
| Selection of the input signal, TYPE: | |
| Default: TYP.L | |

| Menu level | Parameterisation level |
| :--- | :--- | :--- | :--- |
| Setting the display time, sec: | |
| Default: 1.0 | |

Menu level	Parameterisation level
$\begin{aligned} & F_{L}-i \\ & \nabla \Delta \Delta \mid \end{aligned}$	Function for threshold value undercut / exceedance, $\mathrm{Fu}-\mathrm{l}$: Default: HIGH A limit value undercut is selected with LOUU (for LOW = lower limit value), a limit value exceedance with HHG (for HIGH = higher limit value). If e.g. limit value 1 is on a threshold level of 100 and allocated with function $H G H$, an alarm is activated by reaching the threshold level. If the threshold value was allocated to LOU, an alarm will be activated by undercutting the threshold value, as long as the hysteresis is zero.
$\begin{aligned} & \mid L i-\Sigma \\ & \|\nabla \Delta\| \end{aligned}$	Threshold values / limits, LI-C: Default: 300.0
$\begin{aligned} & H U-己 \\ & \|\nabla \Delta\| \end{aligned}$	Hysteresis for threshold values, Hy -z: Default: 0.0 The delayed reaction of the alarm is the difference to the threshold value, which is defined by the hysteresis.
$\begin{gathered} F_{u}-\Xi \\ \nabla \Delta \square \end{gathered}$	Function if display falls below / exceeds limit value, FU-ट: Default: HIGH A limit value undercut is selected with LOUU (for LOW = lower limit value), a limit value exceedance with HIGH (for HIGH = higher limit value). If e.g. limit value 1 is on a threshold level of 100 and allocated with function $H G H$, an alarm is activated by reaching the threshold level. If the threshold value was allocated to LOW, an alarm will be activated by undercutting the threshold value, as long as the hysteresis is zero.
$\begin{aligned} & \text { ULGロE } \\ & \|\nabla \Delta\| \end{aligned}$	User code (4-digit number-combination, free available), U.CODE: Default: 0000 If this code was set (>0000), all parameters are locked for the user, if LOC has been selected before under menu item RUM. By pressing [P] for 3 seconds in operation mode, the display shows CODE. The U.CODE needs to be entered to get to the reduced number of parameter sets. The code has to be entered befor each parameterisation, until the R. CODE (Master code) unlocks all parameters again.

Menu level	Parameterisation level
$\begin{aligned} & \text { REadE } \\ & \|\nabla \Delta \Delta\| \end{aligned}$	Master code (4-digit number-combination, free available), R.CODE: Default: 1234 All parameters can be released with this code, after LOC has been activated under menu item RUM. By pressing [P] for 3 seconds in operation mode, the display shows CODE and enables the user to reach all parametes by entering the R.CODE. Under RUM the parametrisation can be activated permanently by selecting ULOC or PROF, thus at an anew pushing of $[\mathrm{P}]$ in operation mode, the code needs not to be entered again.
5.3. Programming interlock „RUM4*	
$\begin{aligned} & \square \Gamma ぃ \pi \\ & \|\nabla \Delta\| \end{aligned}$	Activation / deactivation of the programming lock or completion of the standard parameterization with change into menu group level (complete function range), RUM: Default: ULOC $\text { ULOE } \frac{\Delta}{\nabla} \text { LDE } \frac{\Delta}{\nabla} \text { PraF } \frac{\Delta}{\nabla} P$ Choose between the deactivated key lock ULOC (works setting) and the activated key lock LOC, or the change into the menu group level PROF. With the navigation keys [©] [\mathbf{V}]. Confirm the selection with [P]. After this, the display confirms the settings with "- . . - -", and automatically switches to operating mode. If LOC was selected, the keyboard is locked. To get back into the menu level, press [P] for 3 seconds in operating mode. Now enter the CODE (works setting 1234) that appears using [\mathbf{A} [[V] plus [P] to unlock the keyboard. FRIL appears if the input is wrong. To parameterize further functions PROF needs to be set. The device confirms this setting with „, - - ;, and changes automatically in operation mode. By pressing [P] for approx. 3 seconds in operation mode, the first menu group INP is shown in the display and thus confirms the change into the extended parameterisation. It stays activated as long as ULOC or LOC is entered in menu group RUM.

5.4. Extended parametersation (Professional operation level)

5.4.1. Signal input parameters

| Menu level | Parameterisation level |
| :--- | :--- | :--- |
| Selection of the input signal, TYPE: | |
| Default: tup. L | |

Menu level	Parameterisation level
	Setting the display time, SEC: Default: 1.0 Da! \square 0.9 then 010 \square 10.0 The display time is set with [$\mathbf{\Delta}$] [\mathbf{V}]. The display moves up in increments of 0.1 up to 1 second and in increments of 1.0 to 10.0 seconds. Confirm the selection by pressing the [P] button. The display then switches back to the menu level again.
$\begin{gathered} \text { बi Lina } \\ \|\nabla \Delta\| \end{gathered}$	Display underflow, DIUMD: Default: -19999 With this function the device undercut (\qquad) can be defined on a definite value.
$\begin{gathered} \text { ब1 . BHE } \\ \|\nabla \triangle\| \end{gathered}$	Display overflow, DI.OUE: Default: 99999 With this function the display overflow (-----) can be defined on a definite value.
$\begin{aligned} & \square \Gamma E L \\ & \|\nabla \Delta\| \end{aligned}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level .,-IMP-".

5．4．2．General device parameters

Menu level	Parameterisation level	
$\begin{aligned} & \text {-1.5EL } \\ & \|\nabla \boxed{\Delta}\| \end{aligned}$	Display time，DISEC： Default： 01.0 D日： \square 80.9 then 010 10.0 The display is set up with［ $\mathbf{\Delta}$ ］［ \mathbf{V} ］．Thereby it switches until 1 second in increments of 0.1 seconds and until 10.0 seconds in increments of 1.0 ．With［ P ］the selection is confirmed and the device changes into menu level．	
ーローாロ $\|\nabla \Delta\|$	Rounding of display values，ROUMD： Default： 00001 This function is for instable display values，where the display value is changed in increments of $1,5,10$ or 50 ．This does not affect the resolution of the optional outputs． With［P］the selection is confirmed and the device changes into menu level．	
$\begin{aligned} & \\| i \quad 5 \square L \\ & \|\nabla \Delta\| \end{aligned}$	Display，DISPL： Default：RCTUR With this function the current measurand，min／max－value or the process－controlled Hold－value can be allocated to the display．With［P］the selection is confirmed and the device changes into menu level．	
$\begin{aligned} & F L R S H \\ & \|\nabla \Delta\| \end{aligned}$	Display flashing，FLASH： Default：MO $\begin{aligned} & \square n a \frac{\Delta}{\nabla} \square R L-i \frac{\Delta}{\nabla} \square R L-2 \frac{\Delta}{\nabla} \square R L . I 2 \frac{\Delta}{\nabla} \\ & R L-3 \frac{\Delta}{\nabla} \square R L-4 \frac{\Delta}{\nabla} \square R L .34 \frac{\Delta}{\nabla} \square R L . R L \frac{\Delta}{\nabla} P \end{aligned}$ A display flashing can be added as additional alarm function either to single or to a combination of off－limit condition．With MD，no flashing is allocated．	

Menu level	Parameterisation level
$\begin{aligned} & \text { LRSL } \\ & \|\nabla \Delta\| \end{aligned}$	Assignment (deposit) of key functions, TRST: Default: MO For the operation mode, special functions can be deposited on the navigation keys [\mathbf{A}] [$\mathbf{\nabla}$], in particular this function is made for devices in housing size $48 \times 24 \mathrm{~mm}$ which do not have a 4th key ([O]-key). If the min/max-memory is activated with EHTR, all measured min/max-values are safed during operation and can be recalled via the navigation keys. The values get lost by restart of the device. If the threshold value correction $L 1.12$ or $L 1.34$ is choosen, the values of the threshold can be changed during operation without disturbing the operating procedure. If $N O$ is selected, the navigation keys are without function in the operation mode.
$\begin{aligned} & \square i \quad \text { Elin } \\ & \|\nabla \Delta\| \end{aligned}$	Special function digital input, DIG.IM: Default: MO For operating mode, special functions can be realised via the digital input. This function is actuated by a voltage signal on the terminal of the digital input. With TRRR the device is tared to zero and saved permanently as offset. The display acknowledges this with 00000 in the display. SET.TR switches into the offset value and can be changed via the navigation keys. Via TOTRL the current value of the totaliser can be displayed for approx. 7 seconds, after this the device switches back on the parameterised display value. If TOT.RE is deposited, the totaliser can be set back by switching on the digital input, the device acknowledges this with 00000 in the display. EHT.RE deletes the min/max-memory. If HOLD has been selected, the moment can be hold constant by pressing the [O]-key, and is updated by releasing the key. Advice: HOLD is activated only, if HOLD was selected under parameter DISPL. RCTUR shows the measurand for approx. 7 seconds, after this the device switches back on the parameterised display value. At RL-I...RL-Y, an output can be set and therewith e.g. a setpoint adjustment can be done. If $M O$ is selected, the [O]-key is without any function in the operation mode.
$\begin{aligned} & \square r E L \\ & \nabla \Delta \mid \end{aligned}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level .,FCT-".

5．4．3．Safety parameters

Menu leve	Parameterisation level
$\begin{aligned} & \text { HILGdt } \\ & \nabla \triangle \Delta \mid \end{aligned}$	User code U．CODE： Default： 0000 Via this code，reduced sets of parameters can be released．A change of the U．CODE can be done via the correct input of the R．CODE（master code）．
R．Lad	Master code，R．CODE： Default： 1234 \square P Ξ 3 P 4 P By entering R．CODE the device will be unlocked and all parameters are released．
But．L	Release／lock analog output parameters，oUT．LE： Default：RLL \square กロ \square Analog output parameters can be locked or released for the user： －EN－OF：the initial or final value can be changed in operation mode －OUT．EO：the output signal can be changed from e．g．0－20 mA to 4－20 mA or 0－10 VDC －RLL：analog output parameters are released －MO：all analog output parameters are locked
BL．LE	Release／lock alarm parameters，RL．LEU： Default：RLL \qquad กロ This parameter describes the user release／user lock of the alarm： －LIMIT：here only the range of value of the threshold values 1－4 can be changed －RLRM．L：here the range of value and the alarm trigger can be changed －RLL：all alarm parameters are released －MO：all alarm parameters are locked

Menu level		Parameterisation level
\square $-\Sigma L$ Back to menu group level, RET:With [P] the selection is confirmed and the device changes into menu group level ..COD-".		

5.4.4. Analog output parameters for analog output

| Menu level | Parameterisation level |
| :--- | :--- | :--- |
| Selection reference of analog output, outpr: | |
| Default: 8 ctur | |

Menu level	Parameterisation level
$$	Setting up the initial value of the analog output, OUT.OF: Default: 00000 The initial value can be adjusted from the smallest to the highest digit with [$\mathbf{\Delta}$][V]. Confirm each digit with [P]. A minus sign can only be parameterized on the leftmost digit. After the last digit, the display switches back to the menu level.
$\begin{aligned} & \square F L D L \\ & \|\nabla \triangle\| \end{aligned}$	Overflow behaviour, O.FLOU: Default: EDGE $\begin{aligned} & \text { EdEE } \frac{\Delta}{\nabla} \text { La.End } \frac{\Delta}{\nabla} \text { Lo.DFF } \frac{\Delta}{\nabla} \text { Ea.Min } \\ & \text { EaMRH } \frac{\Delta}{\nabla} \mathrm{P} \end{aligned}$ To recognise and evaluate faulty signals, e.g. by a controller, the overflow behaviour of the analog output can be defined. As overflow can be seen either EDGE, that means the analog output runs on the set limits e.g. 4 and 20 mA , or TO.OFF (input value smaller than initial value, analog output switches on e.g. 4 mA), TD.END (higher than final value, analog output switches on e.g. 20 mA). If TO.MIM or TO.MRX is set, the analog output switches on the least significant or leftmost possible binary value. This means that values of e.g. $0 \mathrm{~mA}, 0$ VDC or values higher than 20 mA or 10 VDC can be reached. With [P] the selection is confirmed and the device changes into menu level.
$\begin{aligned} & \mid r E L \\ & \|\nabla \Delta\| \end{aligned}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level .,-OUT-".

5.4.5. Relay functions

Menu level	Parameterisation level		
$\begin{aligned} & \mid-E L-i \\ & \|\nabla \Delta\| \end{aligned}$	Alarm relay Default: RL- LaUi Each setpo inserted at logical links levels is via leaped. Via and the se selection is	1, REL-7: A.... RL- \square t (optional) can be activated alarms RL-1 are available in the LOGIC, at all other DM/OFF the setpoints point display are s confirmed and the de	RL-n $1 . .$. RL-n4 Un \square d up via 4 alarms (by default). This can either be deactivated alarms RLMI/Y. If LOGIC was selected, u level $L O G-1$ and $C O M-1$. Access to these two menu cted functions, these two parameters are overbe activated/deactivated, in this case the output set on the front of the device. With [P] the changes into menu level.
$\begin{aligned} & \text { La■-i } \\ & \|\nabla \Delta\| \end{aligned}$	Logic relay Default: $O R$ The switchi describes th	LOG-1 behaviour of the se functions with in	Rind \square nRind is defined via a logic link, the following schema ion of RL-land $\operatorname{RL}-2$:
	ar	A1 v A2	As soon as a selected alarm is activated, the relay operates. Equates to operating current principle.
	nar	$\overline{A 1 \vee A 2}=\overline{A 1} \wedge \bar{A}$	The relay operates only, if no selected alarm is active. Equates to quiescent current principle.
	Rn	A1 \wedge a 2	The relay operates only, if all selected alarms are active.
	の日п	$\overline{A 1 \wedge A 2}=\overline{A 1} \vee \overline{A 2}$	As soon as a selected alarm is not activated, the relay operates.
	With [P] the selection is confirmed and the device changes into menu level.		

Menu leve	Parameterisation level		
$\begin{aligned} & \text { Fa!- } \\ & \sqrt{\square} \end{aligned}$	Alarms for Default： 8.1 R． 1 The allocation group of ala changes int	lay 1，com－1： R．ᄅ of the alarms to ms can be chosen menu level．	1 happens via this parameter，one alarm or a th $[P]$ the selection is confirmed and the device
rEL-	Alarm relay Default：RL－ Lロらi Each setpo inserted at logical links levels is via leaped．Via and the se selection is	$2, R E L-2:$ （optional）can be tivated alarms RL－1 re available in the LOGIC，at all other V／DFF the setpoints oint display are se nfirmed and the de	RL－n5 ．．．．RL－nB d up via 4 alarms（by default）．This can either be deactivated alarms RLMI／Y．If LOGIC was selected， u level LOG－1 and COM－7．Access to these two menu cted functions，these two parameters are over－ be activated／deactivated，in this case the output set on the front of the device．With［P］the changes into menu level．
	Logic relay Default：$O R$ \square The switchi describes th	LOG－2： behaviour of the se functions with in	Rind \square nRnd is defined via a logic link，the following schema on of RL－I and RL－z：
	ロr	A1 v A2	As soon as a selected alarm is activated，the relay operates．Equates to operating current principle．
	nar	$\overline{A 1 \vee A 2}=\overline{A 1} \wedge$	The relay operates only，if no selected alarm is active．Equates to quiescent current principle．
	日ra	A1 ${ }^{\text {a } 2}$	The relay operates only，if all selected alarms are active．
	пアп』	$\overline{A 1 \wedge A 2}=\overline{A 1} \vee$	As soon as a selected alarm is not activated，the relay operates．
	With［P］the selection is confirmed and the device changes into menu level．		

| Menu level | Parameterisation level |
| :--- | :--- | :--- |
| | Alarms for relay 2, com-z:
 Default: 8.2 |
| The allocation of the alarms to relay 5 happens via this parameter, one alarm or a | |
| group of alarms can be chosen. With [P] the selection is confirmed and the device | |
| changes into menu level. | |

5.4.6. Alarm parameter

Menu level	Parameterisation level
$\begin{aligned} & \text { BL- i. i } \\ & \|\nabla \triangle\| \end{aligned}$	Dependency alarm 1, RLRM.1: Default: actur The dependency of alarm 1 can be related to special functions, in detail these are the current measurand, the min-value or the max-value. If $H O L D$ is selected, then the alarm is hold and processed just after deactivation of HOLD. EHTER causes the dependency by an external signal via the digital input. With [P] the selection is confirmed and the device changes into menu level.
$\left.\begin{array}{ll} L & i-i \\ i & \Delta \end{array} \right\rvert\,$	Threshold values / limit values, $L 1-1$: Default: 200.0 The limit value defines the threshold, that activates/deactivates an alarm.

Menu level	Parameterisation level
$\begin{aligned} & H \unlhd- \\ & \nabla \Delta \square \end{aligned}$	Hysteresis for threshold values, $4 \mathrm{H}-7$ Default: 0.0 The delayed reaction of the alarm is the difference to the threshold value, which is defined by the hysteresis.
$\begin{aligned} & F_{u}- \\ & \|\nabla \Delta\| \end{aligned}$	Function for threshold value undercut / exceedance, $\mathrm{FU}-\mathrm{l}$: Default: $\boldsymbol{H I G H}$ Н БН Laus \square A limit value undercut is selected with LOUU (for LOW = lower limit value), a limit value exceedance with HIGH (for HIGH = higher limit value). If e.g. limit value 1 is on a threshold level of 100 and allocated with function $H I G H$, an alarm is activated by reaching the threshold level. If the threshold value was allocated to LOU, an alarm will be activated by undercutting the threshold value, as long as the hysteresis is zero.
$\begin{gathered} \operatorname{Lan}-\boldsymbol{i} \\ \|\nabla \Delta\| \end{gathered}$	Switching-on delay, TON-1: Default: 000 Preset a delayed switching-on of 0-100 seconds for limit value 1 .
$\begin{aligned} & \text { LaF-i } \\ & \|\nabla \boxed{\Delta}\| \end{aligned}$	Switching-off delay, TOF-1: Default: 000 Preset a delayed switching-off of 0-100 seconds for limit value 1 .
$\begin{aligned} & \square-E L \\ & \|\nabla \Delta\| \end{aligned}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level .,-RLI-".

The same applies for -RLZ- to -RLB-

Programming interlock, RUN:

6. Reset to default values

To return the unit to a defined basic state, a reset can be carried out to the default values.
The following procedure should be used:

- Switch off the power supply
- Press button [P]
- Switch on voltage supply and press [P]-button until ..-...-" appears in the display.

With reset, the default values of the program table are loaded and used for subsequent operation. This puts the device back to the state in which it was supplied.

Caution! All application-related data are lost.

7. Alarms / Relays

This device has 4 virtual alarms that can monitor one limit value in regard of an undercut or exceedance. Each alarm can be allocated to an optional relay output S1-S2; furthermore alarms can be controlled by events like e.g. Hold or min/max-value.

Function principle of alarms / relays	
Alarm / Relay \mathbf{x}	Deactivated, instantaneous value, min/max-value, Hold-value
Switching threshold	Threshold / limit value of the change-over
Hysteresis	Broadness of the window between the switching thresholds
Working principle	Operating current / Quiescent current

Operating current

By operating current the alarm S1-S2 is off below the threshold and on on reaching the threshold.

Quiescent current

By quiescent current the alarm S1-S2 is on below the threshold and switched off on reaching the threshold.

Switching-on delay

The switching-on delay is activated via an alarm and e.g. switched 10 seconds after reaching the switching threshold, a short-term exceedance of the switching value does not cause an alarm, respectively does not cause a switching operation of the relay. The switching-off delay operates in the same way, keeps the alarm / the relay switched longer for the parameterised time.

8. Technical data

Housing			
Dimensions	$48 \times 24 \times 90 \mathrm{~mm}$ (BxHxD)		
	$48 \times 24 \times 109 \mathrm{~mm}$ (BxHxD) incl. plug-in terminal		
Panel cut-out	$45.0^{+0.6} \times 22.2^{+0.3} \mathrm{~mm}$		
Wall thickness	up to 3 mm		
Fixing	screw elements		
Material	PC Polycarbonate, black, UL94V-0		
Sealing material	EPDM, 65 Shore, black		
Protection class	standard IP65 (Front side), IP00 (Back side)		
Weight	approx. 200 g		
Connection	plug-in terminal; wire cross section up to $2.5 \mathrm{~mm}^{2}$		
Display			
Digit height	10 mm		
Segment colour	red (optional green, yellow or blue)		
Range of display	-19999 to 99999		
Setpoints	one LED per setpoint		
Overflow	horizontal bars at the top		
Underflow	horizontal bars at the bottom		
Display time	0.1 to 10.0 seconds		
Input	Measuring range	Measuring error	Digit
Type L (Fe-CuNi old Type)	-200.0...-900.0 ${ }^{\circ} \mathrm{C}$	2 K	± 1
Type J (Fe-CuNi)	$-210.0 . . .1200 .0^{\circ} \mathrm{C}$	2 K	± 1
Type K (NiCr-NiAL)	$-270.0 . . .1372 .0^{\circ} \mathrm{C}$	2 K	± 1
Type B (Pt30Rh-Pt6Rh)	$80.0 \ldots 1820.0^{\circ} \mathrm{C}$	2 K	± 1
Type S (Pt10Rh-Pt)	$-50.0 . .1768 .0^{\circ} \mathrm{C}$	2 K	± 1
Type N (NiCrSi-NiSi)	$-270.0 \ldots 1300^{\circ} \mathrm{C}$	2 K	± 1
Type E (NiCr-CuNi)	$-270.0 . . .1000 .0^{\circ} \mathrm{C}$	2 K	± 1
Type T (Cu-Cu-Ni)	$-270.0 \ldots 400.0^{\circ} \mathrm{C}$	2 K	± 1
Type R (Pt13Rh-Pt)	$-50.0 \ldots 1768.0^{\circ} \mathrm{C}$	2 K	± 1
Digital input	$\begin{aligned} & <2.4 \mathrm{~V} \text { OFF, } 10 \mathrm{~V} \text { ON, max. } 30 \mathrm{VDC} \\ & \mathrm{R}_{1} \sim 5 \mathrm{k} \Omega \end{aligned}$		

Accuracy	
Characteristic line error	< ± 1
Reference junction	semiconductor sensor
Temperature drift	$100 \mathrm{ppm} / \mathrm{K}$
Measuring time	0.1... 10.0 seconds
Measuring principle	U/F-converter
Resolution	$0.1^{\circ} \mathrm{C}$ or $0.1^{\circ} \mathrm{F}$
Output	
Analog output	0/4-20 mA / burden $\leq 500 \Omega ; 0-10 \mathrm{VDC} / \mathrm{burden} \geq 10 \mathrm{k} \Omega$, 16 bit
Switching outputs	2 PhotoMos (Closer)
Power pack	$100-240$ VAC $50 / 60 \mathrm{~Hz} / \mathrm{DC} \pm 10 \%$ (max. 5 VA) $24 \mathrm{VDC} \pm 10 \%$ galv. isolated (max. 4 VA)
Memory	EEPROM
Data life	≥ 100 years at $25^{\circ} \mathrm{C}$
Ambient conditions	
Working temperature	$0 . .50^{\circ} \mathrm{C}$
Storing temperature	$-20 . .80^{\circ} \mathrm{C}$
Weathering resistance	relative humidity 0-80\% on years average without dew
EMV	EN 61326
CE-sign	Conformity to directive 2014/30/EU
Safety standard	According to low voltage directive 2014/35/EU EN 61010; EN 60664-1

9. Safety advices

Please read the following safety advices and the assembly in chapter 1 before installation and keep it for future reference.

Proper use

The M3-7T-device is designed for the evaluation and display of sensor signals.

Danger! Careless use or improper operation can result in personal injury and/or can damage the equipment.

Control of the device

The panel meters are checked before dispatch and sent out in perfect condition. Should there be any visible damage, we recommend close examination of the packaging. Please inform the supplier immediately of any damage.

Installation

The M3-7T-device must be installed by a suitably qualified specialist (e.g. with a qualification in industrial electronics).

Notes on installation

- There must be no magnetic or electric fields in the vicinity of the device, e.g. due to transformers, mobile phones or electrostatic discharge.
- The fuse rating of the supply voltage should not exceed a value of 0.5A N.B. fuse!
- Do not install inductive consumers (relays, solenoid valves etc.) near the device and suppress any interference with the aid of RC spark extinguishing combinations or free-wheeling diodes.
- Keep input, output and supply lines separate from one another and do not lay them parallel with each other. Position "go" and "return lines" next to one another. Where possible use twisted pair. This way best measuring results can be received.
- Screen off and twist sensor lines. Do not lay current-carrying lines in the vicinity. Connect the screening on one side on a suitable potential equaliser (normally signal ground).
- The device is not suitable for installation in areas where there is a risk of explosion.
- Any electrical connection deviating from the connection diagram can endanger human life and/or can destroy the equipment.
- The terminal area of the device is part of the service. Here electrostatic discharge needs to be avoided. Attention! High voltages can cause dangerous body currents.
- Galvanic isolated potentials within one complex need to be placed on an appropriate point (normally earth or machines ground). So, a lower disturbance sensibility against impacted energy can be reached and dangerous potentials, that can occur on long lines or due to faulty wiring, can be avoided.

10. Error elimination

	Error description	Measures
1.	The unit permanently indicates overflow.	- The input has a very high measurement, check the measuring circuit. - With a selected input with a low voltage signal, it is only connected on one side or the input is open. - Not all of the activated supporting points are parameterised. Check if the relevant parameters are adjusted correctly.
2.	The unit permanently shows underflow.	- The input has a very low measurement, check the measuring circuit. - With a selected input with a low voltage signal, it is only connected on one side or the input is open. - Not all of the activated supporting points are parameterised. Check if the relevant parameters are adjusted correctly.
3.	The word HELP lights up in the 7-segment display.	- The unit has found an error in the configuration memory. Perform a reset on the default values and reconfigure the unit according to your application.
4.	Program numbers for parameterising of the input are not accessible.	- Programming lock is activated - Enter correct code
5.	Err1 lights up in the 7-segment display	- Please contact the manufacturer if errors of this kind occur.
6.	The device does not react as expected.	- If you are not sure if the device has been parameterised before, then follow the steps as written in Chapter 6. and set it back to its delivery status.

