Frequency metering with 2 set points - microprocessor based technology

- Free scalable indication and set points from 0 up to +9999
- Standard: min/max memory - option: analogue output
- Allows to be placed side by side in grid and mosaics systems

ORDER NUMBER OF TYPE PFE 4.007.7782B

Connections for Namur and 3-wire NPN and PNP see last page. (externally 24 VDC neccessary)

Options

- green LED
- Protection IP54
- Plug in terminal with protection IP40
- Plug in terminal with protection IP54
- Analog output 0-10 VDC - (12 bit)
- Analog output 0-20 mA/load 500Ω
- Analog output 4-20 mA/load 500Ω

With analog output setpoints S1 and S2 not available!

- Set points as open emitter
- Dimension strip selectable (max. 8 characters)

Technical data

Dimensions	Housing Assembly cut out Fastening Housing material Protective system weight connection	$48 \times 24 \times 90 \mathrm{~mm}$, including screw terminal $45.0^{+0.6} \times 22.2^{+0.3} \mathrm{~mm}$ special quick plastic clamp proper to fix in wall thickness up to 50 mm PC/ABS-Blend, colour black, UL94V-0 at the front IP40 connection IP00 approx. 75 g at the rear side via plug in connector up to $1.5 \mathrm{~mm}^{2}$
Input	Sensors	Namur, 3-wire pick up, impulse input High/low level ---> $10 \mathrm{~V} /<6 \mathrm{~V}$
	Input resistance Input frequency	Ri at $\quad 10 \mathrm{~V}=10 \mathrm{~K} \Omega$ 1 Hz up to 500 KHz
Output	Open collector Analogue output	2 outputs supply by customers $\left(\mathrm{U}_{\mathrm{B}}=5-40 \mathrm{~V} / \mathrm{I}_{\text {max }}=100 \mathrm{~mA}\right)$ 0-10 VDC (12 bit) 0-20 mA/load 500 Ohm (12 bit) 4-20 mA/load 500 Ohm (12 bit)
Accuracy	Resolution Measuring fault Measuring principle Temp. Drift	0 up to +9999 $+/-0.04 \%$ of the input frequency frequency/pulse width measuring 40 ppm/K
Power unit	Supply voltage Power consumption	24 VDC +/-10 \% galvanic insulated approx. 2 VA
Indication	Display Overflow Time of indication	LED with 7 segments, 10 mm high, red 4 digits = indication 9999 indication of four transversal bars adjustable from 0.2 to 10.0 seconds
Ambient conditions Gehäuse:	Working temperature Storing temperature	$\begin{aligned} & 0 \text { up to }+60^{\circ} \mathrm{C} \\ & -20 \text { up to }+80^{\circ} \mathrm{C} \end{aligned}$
Gehäuse:		

[^0]
Connection diagram, programming, remarks

Connections for Namur and 3-wire
NPN and PNP see last page.
(externally 24 VDC neccessary)

Setting

1. Connect the instrument according to the wiring diagramm.
2. After power on, the instruments runs into a lamptest and returns back to the standard mode.
3. Connect the desired input frequency to the measuring input.
4. Pressing the P-key enters the programm mode with indication of "P1" on the display.
5. Pressing the \mathbf{P} und $\mathbf{\Delta}$ key simultaneously steps through the different programm numbers.
6. Pressing $\mathbf{\Delta}$ oder $\boldsymbol{\nabla}$ key shows the current values.
7. To change values use $\boldsymbol{\Delta}$ oder $\boldsymbol{\nabla}$ key.
8. Otherwise the remaining values will be memorized automatically 7 seconds after the last touch of key with leaving program mode.

Additional key-functions in standard-mode for indication of $\mathbf{m i n} / \mathrm{max}$ values.

Simultaneously pressing of $\boldsymbol{\nabla}$ and $\boldsymbol{\Delta}$ key deletes and actualizes min/max-memory.
Δ key enters max-memory.
∇ key enters min-memory.

Instructions

After power on the instrument with the inbuilt microcontroller starts with an initial program activating lamp test and readout of memorized parameters in an EEPROM. In case of loosing parameters or any defects in hardware the system generates an error message "HELP". This function prevents damage from the peripherals and human life, totally reset is required. After a new power on, the system remains in lamptest while pressing P-key. Then the unit storages the default parameters and is ready for a new programming.

Setpoints

The following diagrams are showing the switching operation of PFE4 open collector outputs, the hysteresis is free programmable. There are two kinds of operation:

Example: operation current

Operation current means that the open collector will be conducted if reaching the adjusted setpoint.

Example: quiescent current

Quiescent current means that the open collector will be cutoff if reaching the adjusted setpoint.

Program table, example of programming

Program table 1

ProgramNumber (PN)	Function	Remark	Display	Basic parameter after reset
1	Input of desired indication value		0 up to +9999	1000
2	Setting of decimal point	Press $\boldsymbol{\Delta}$ until desired decimal point will be shown.		no dec. point
3	Setting of input frequency	Setting in Khz, dec. point unconsidered.		1.000
4	Setting of decimal point for input frequency	(Minimum one decimal point is necessary) Press $\boldsymbol{\Delta}$ until desired decimal point will be shown		decimal point on first digit
5	Input of final value for analog output	Option	0 up to +9999	1000
6	Input of offset for analog output	Option	0 up to +9999	0
8	Input of display time		0.2 up to 10.0 s	1.0

Program table 2 (Set points)

S1	S2	Function	Display	Basic parameter after reset
PN	PN			
61	66	Setpoint	0 up to +9999	$500 / 600$
62	67	Hysteresis	0 up to +9999	1
63	68	Quiescent current	0	-
		Operating current	1	1

Example for programming

Input:
Measuring value: $\quad 0-85 \mathrm{KHz}$
Indication: $\quad 0 \mathrm{~Hz}=0.0 \quad 85.00 \mathrm{KHz}=300.0$
Display refres. time: 2.0 seconds
Setpoints:
S1 ==> $\quad 60.0$ and quiescent current
open collctor conducting = 58.0 ==> hysteresis 2.0

Analog output:
(no setpoints)

S2 ==> $\quad 150.0$ and operating current
open collector cut off $=80.0==>$ hysteresis 70.0 $\begin{array}{lllll}0 \mathrm{~V} \text { output } & ==> & \text { display } 0.0 & ==> & \text { measuring value } 0 \mathrm{~Hz} \\ 10 \mathrm{~V} \text { output } & ==> & \text { display } 300.0 & ==> & \text { measuring value } 85.00 \mathrm{KHz}\end{array}$

The basic adjustments concerning to the following program example are the ground parameters after a total reset occuring through a power on with pressing P-key (see previous page).

Program advices

Pressing the P-key enters always the program mode with program number 1. The "P1" begins to blink in change with the current value after 3 seconds. After further 4 seconds the system leaves the program mode and turns to the standard mode. In Program mode pressing $\boldsymbol{\nabla}$ or $\boldsymbol{\Delta}$ key selects the current values which are free scalable with both the keys. All parameters will be memorized automatically after leaving program mode.

Programming.

Switch power on!

Lamp test

8.8.8.8.

Set free scalable value.

To program number 2 with \mathbf{P} and \mathbf{A}

To program number 3 with \mathbf{P} and \mathbf{A}

Example for programming

To memorized value with ∇ or $\mathbf{\Delta}$.

Set the free scalable input frequency in Khz. Decimal point unconsidered.

$$
\begin{array}{|c|c|c|c|}
\hline \text { EI } & \text { II } \\
\cline { 1 - 3 }
\end{array}
$$

To program number 4 with \mathbf{P} and $\mathbf{\Delta}$

To memorized value with ∇ or $\mathbf{\Delta}$.

Set decimal point.

To program number 8 with \mathbf{P} and $\mathbf{\Delta}$

To memorized value with ∇ or

Set display time

The following programming steps are necessary for the set point programming of S1 and S2 only.
To program number 61 with \mathbf{P} and \mathbf{A}.

To memorized value with $\boldsymbol{\nabla}$ or $\boldsymbol{\Delta}$.

Set free scalable value for set point S1.

Set hysteresis of S1.

To program number 63 with \mathbf{P} and \mathbf{A}

Set quiescent current.

To program number 66 with \mathbf{P} and $\mathbf{\Delta}$.

To memorized value with $\boldsymbol{\nabla}$ or $\mathbf{\Delta}$

Set free scalable value for set point S2.

To program number 67 with \mathbf{P} and \mathbf{A}

To memorized value with ∇ or $\boldsymbol{\Delta}$.

Set hysteresis of S2.

To program number 68 with \mathbf{P} and \mathbf{A}

Programming finished.

All programmed values are memorized after 7 seconds. Jumps back into standard mode automatically.

The program numbers 5 and 6 are available with option analogue output only.

To program number 5 with \mathbf{P} and $\mathbf{\Delta}$

To memorized value with $\boldsymbol{\nabla}$ or $\boldsymbol{\Delta}$.

Set free scalable final indication value for analog output.

To program number 6 with \mathbf{P} and $\mathbf{\Delta}$.

To memorized value with $\boldsymbol{\nabla}$ or $\mathbf{\Delta}$.

Programming finished.

All programmed values are memorized after 7 seconds. Jumps back into standard mode automatically.

Connection diagrams

Terminal holding for different sensors

Namur

3-wire NPN

3-wire PNP

[^0]: CE-sign
 For unlimited use of the instrument within the directives for electromagnetic compatibility 89/336/EC frequency input wires have to be used with shielded cable and cable's shield connected to earth ground at one end only.

