- Standard: min/max memory - optional analogue output
- Mounting into panels with thickness up to 50 mm

Power supply 115 VAC
(connection via terminal 10 and 11)
Power supply 24 VDC
PFL 4.007.6722B

- galvanic insulated - (11=plus, 10=minus)

Options

- green LED
- Protection IP54
- Protection IP65
- Plug in terminal with protection IP40
- Plug in terminal with protection IP54
- Plug in terminal with protection IP65
- Analog output 0-10 VDC
- Analog output 0-20 mA/load 500Ω
- Analog output 4-20 mA/load 500Ω
- Analog output 0-10 VDC (Power supply 24 VDC galvanically insulated)
- Analog output 0-20 mA/load 500Ω (Power supply 24 VDC galvanically insulated)
- Analog output 4-20 mA/load 500Ω (Power supply 24 VDC galvanically insulated)

With analog output there is no setpoint S1!

- Dimension strip selectable (7 characters max.)
- Other power supplies on demand
- Other impuls inputs on demand (TTL, CMOS, etc)

Technical data

Dimensions	Housing Assembly cut out Fastening Housing material Protective system Weight Connection	$72 \times 36 \times 97 \mathrm{~mm}$, including screw terminal $68.0^{+0.7} \times 33.0^{+0.6} \mathrm{~mm}$ special quick plastic clamp proper to fix in wall thickness up to 50 mm PC/ABS-plastics blend, colour black, UL94V-0 at the front IP40 connection IP00 approx. 0.190 kg at the rear side via terminals up to $2.5 \mathrm{~mm}^{2}$
Input	Sensors Input resistance Input frequency	Namur, 3-wire pick up, impulse input High/low level ---> $10 \mathrm{~V} /<6 \mathrm{~V}$ Ri at $\quad 10 \mathrm{~V}=10 \mathrm{~K} \Omega$ $0.01 \mathrm{~Hz}-9999 \mathrm{~Hz}$
Output	Relay output Switching cycles Open collector Analogue output	charge $240 \mathrm{VAC} / 0.25 \mathrm{~A}-24 \mathrm{VDC} / 1 \mathrm{~A}$, with ohm resistive burden 2 * 10^{5} at max. contact rating 10 * 10^{6} mechanically supply by customers $\left(\mathrm{U}_{\mathrm{B}}=5-40 \mathrm{~V} / \mathrm{I}_{\text {max }}=100 \mathrm{~mA}\right)$ $\left.\begin{array}{l}0-10 \text { VDC (12 bit) } \\ 0-20 \mathrm{~mA}(12 \mathrm{bit}) \text { - load } 500 \mathrm{Ohm} \\ 4-20 \mathrm{~mA}(12 \mathrm{bit})-\text { load } 500 \mathrm{Ohm}\end{array}\right\}$ The analogue output is galvanic insulated from the measuring input!
Accuracy	Resolution Measuring fault Measuring principle Temp. Drift	0 up to +9999 $+/-0.04 \%$ of the input frequency frequency/pulse width measuring 40 ppm/K
Power unit	Supply voltage Power consumption	230/115 VAC +/- 10 \% ($50-60 \mathrm{~Hz}$), 24 VDC +/-10 \% galvanic insulated approx. 3 VA
Indication	Display Overflow Indication time	LED with 7 segments, 14 mm high, red 4-digit = indication 9999 indication of four transversal bars from 0.2 up to 10.0 seconds adjustable
Ambient conditions	Working temperature Storing temperature	$\begin{aligned} & 0 \text { up to }+60^{\circ} \mathrm{C} \\ & -20 \text { up to }+80^{\circ} \mathrm{C} \end{aligned}$

Housing:

[^0]
Connection diagram, programming, remarks

Connections for Namur and 3-wire NPN
and PNP see last page.
(externally 24 VDC necessary)

Setting

1. Connect the instrument according to the wiring diagramm.
2. After power on, the instruments runs into a lamp test and returns back to the standard mode.
3. Connect the desired input frequency to the measuring input.
4. Pressing the \mathbf{P}-key enters the program mode with indication of " $\mathbf{P 1}$ " on the display.
5. Pressing the \mathbf{P} and $\mathbf{\Delta}$ key simultaneously steps through the different program numbers.
6. Pressing $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ key shows the current values.
7. To change values use $\mathbf{\Delta}$ or $\boldsymbol{\nabla}$ key.
8. Otherwise the remaining values will be memorized automatically 7 seconds after the last touch of key with leaving program mode.

Additional key-functions in standard mode for indication of min/max values.

Simultaneously pressing of $\boldsymbol{\nabla}$ and $\boldsymbol{\Delta}$ key deletes and actualizes min/max-memory.
Δ key enters max-memory.
∇ key enters min-memory.

Instructions

After power on the instrument with the inbuilt microcontroller starts with an initial program activating lamp test and readout of memorized parameters in an EEPROM. In case of loosing parameters or any defects in hardware the system generates an error message "HELP". This function prevents damage from the peripherals and human life, totally reset is required. After a new power on, the system remains in lamp test while pressing P-key. Then the unit storages the default parameters and is ready for a new programming.

Setpoints

The following diagrams are showing the switching operation of PFL4 relay contacts and open collector outputs, the hysteresis is free programmable. There are two kinds of operation:

Example: operation current

Operation current means that the open collector will be pulled in (conducting) if reaching the adjusted setpoint.

Example: quiescent current

Quiescent current means that the open collector will be dropped out (cutoff) if reaching the adjusted setpoint.

Program table, example of programming

Program table 1

Program Number (PN)	Function	Remark	Display	Basic parameter after reset
1	Input of desired indication value		0 up to +9999	1000
2	Setting of decimal point for indication value	Press $\boldsymbol{\Delta}$ for desired decimal point		no deci. point
3	Setting of input frequency Adjust the numerically maximum value.	Setting in Hz The decimal point remains unconsidered.		1000.
4	Setting of decimal point for input frequency (corresponds with selected measuring range) The position of the decimalpoint corresponds to the multiplier.	Press $\boldsymbol{\Delta}$ for desired decimal point x corresponds $f^{* 1}$ x, x corresponds $f^{*} 0.1$ $x, x x$ corresponds $f^{*} 0.01$ $x, x x x$ corresponds $f^{*} 0.001$	0001 to 9999 000.1 to 999.9 00.01 to 99.99 0.001 to 9.999	no deci. point
5	Input of final value for analog output	Option	0 up to +9999	1000
6	Input of offset for analog output	Option	0 up to +9999	0
7	Setting delay (last input flank up to indication value „0")	Adjustment range: 1 up to 250 seconds	1 up to 250 s	10
8	Input of display time		0.2 up to 10.0 s	1.0

During indication times> 7 seconds, the most supreme input frequency is limited as follows:

Indication time (s)	Maximum frequnecy
7	9000
8	8000
9	7000
10	6500

Exceeding the limit is indicated by transversal bars ,"- - -"
The max. permissible input frequency is controlled by 16 kHz , the device receives a reset above this frequency through the built-in watchdog.

Program table 2

(setpoints)

S1	S2	Function	Display	Basic parameter after reset
PN	PN			
61	66	Setpoint	0 up to +9999	$500 / 600$
62	67	Hysteresis	0 up to +9999	1
63	68	Quiescent current	0	-
		Operating current	1	1

Example for programming

Input:	frequency	
Measuring value:	$0-8.5 \mathrm{~Hz}$	
Indication:	$0 \mathrm{~Hz}=0.0 \quad 8.5 \mathrm{~Hz}=300.0$	
Display refres. time:	2.0 seconds	
Setpoints:	$\mathrm{S} 1==>$	60.0 and quiescent current Relay pull in $=58.0==>2.0$
		$\mathrm{~S} 2==>$
		150.0 and operating currrent Relay drop out $=80.0==>70.0$

Analog output: 0 V output ==> display 0.0 ==>
(Setpoint S1 not available) 10 V output ==> display 300.0 =->

The basic adjustments concerning to the following program example are the ground parameters after a total reset occuring through a power on with pressing P-key (see previous page).

Program advices

Pressing the P-key enters always the program mode with program number 1. The „ $\mathbf{P 1}$ " begins to blink in change with the current value after 3 seconds. After further 4 seconds the system leaves the program mode and goes to the standard mode. In Program mode pressing $\boldsymbol{\nabla}$ or $\mathbf{\Delta}$ keyselects the current values which are free scalable with both the keys. All parameters will be memorized automatically after leaving program mode.

Example for programming

Programming

Switch power on!
Lanpest B.B.B.B.

Standard mode

Enter program mode

To memorized value with $\boldsymbol{\nabla}$ or $\boldsymbol{\Delta}$.

Set free scalable value

To program number 2 with \mathbf{P} and $\mathbf{\Delta}$.

To memorized value with $\boldsymbol{\nabla}$ or $\mathbf{\Delta}$.

Set decimal point.

$$
0.0
$$

To program number 3 with \mathbf{P} and \mathbf{A}

To memorized value with ∇ or $\mathbf{\Delta}$.
1000.

Set the free scalable input frequency in Hz . Decimal point unconsidered.

I	I	I	I
\square	∇	\triangle	

To program number 4 with \mathbf{P} and $\mathbf{\Delta}$

To memorized value with $\boldsymbol{\nabla}$ or $\boldsymbol{\Delta}$

Set decimal point

To program number 7 with \mathbf{P} and $\mathbf{\Delta}$.

To memorized value with $\boldsymbol{\nabla}$ or $\mathbf{\Delta}$.

To program number 8 with \mathbf{P} and \mathbf{A}

To memorized value with ∇ or $\mathbf{\Delta}$.

Set display time.

The following programming steps are necessary for setpoint-programming of S1 and S2 only.

To program number 61 with \mathbf{P} and

To memorized value with $\boldsymbol{\nabla}$ or $\mathbf{\Delta}$.

Set free scalable value of setpoints S1.

To program number 62 with \mathbf{P} and \mathbf{A}

Set hysteresis of S1

To program number 2 with \mathbf{P} and \mathbf{A}

Set quiescent current.

To program number 2 with \mathbf{P} and $\mathbf{\Delta}$.

To memorized value with $\boldsymbol{\nabla}$ or $\mathbf{\Delta}$.

Set free scalable value of setpoint S2.

To program number 67 with \mathbf{P} and \mathbf{A}

To memorized value with $\boldsymbol{\nabla}$ or $\boldsymbol{\Delta}$.

Example for programming, connection diagrams

Set hysteresis of S2

To program number 68 with \mathbf{P} and \mathbf{A}

To memorized value with $\boldsymbol{\nabla}$ or $\boldsymbol{\Delta}$.

Programming finished.

All programmed values will be memorized after 7 seconds. Jumps back into standard mode automatically.

The program numbers 5 and 6 are available with option analogue output only.

To memorized value with ∇ or $\mathbf{\Delta}$.

Set free scalable final indication value for analog output.

To memorized value with $\boldsymbol{\nabla}$ or $\boldsymbol{\Delta}$

Programming finished.
All programmed values will be memorized after 7 seconds. Jumps back into standard mode automatically.

Setting possibilities of the jumper field on the rear side

Terminal holding for different sensors

Namur					
PFL 4					
1	2	3	4	10	11
Bridge Namur					
		VAMC			

3-wire NPN

3-wire PNP

Namur

3-wire NPN

3-wire PNP

[^0]: CE-sign
 For unlimited use of the instrument within the directives for electromagnetic compatibility 89/336/EC frequency input wires have to be used with shielded cable and cable's shield connected to earth ground at one end only.

