

Connections for Namur and 3 -wire
NPN and PNP see last page. (externally 24 VDC necessary)

Options

- green LED
- Protection IP54
- Plug in terminal with protection IP40
- Plug in terminal with protection IP54
- Analog output 0-10 VDC - (12 bit)
- Analog output 0-20 mA/load 500Ω
- Analog output 4-20 mA/load 500Ω

With analog output setpoints S1 and S2 not available!

- Setpoints as open emitter
- Dimension strip selectable (max. 8 characters)

Technical data

[^0]
Connection diagram, programming, remarks

Connections for Namur and 3-wire NPN and
PNP see last page. (externally 24 VDC

		$\mathbf{5}$	$\mathbf{6}$		$\mathbf{8}$	$\mathbf{9}$

Setting

1. Connect the instrument according to the wiring diagramm.
2. After power on, the instruments runs into a lamp test and returns back to the standard mode.
3. Connect the desired input frequency to the measuring input.
4. Pressing the P-key enters the programm mode with indication of "P1" on the display.
5. Pressing the \mathbf{P} und $\mathbf{\Delta}$ key simultaneously steps through the different programm numbers.
6. Pressing $\mathbf{\Delta}$ oder $\boldsymbol{\nabla}$ key shows the current values.
7. To change values use $\boldsymbol{\Delta}$ oder $\boldsymbol{\nabla}$ key.
8. Otherwise the remaining values will be memorized automatically 7 seconds after the last touch of key with leaving program mode.

Additional key-functions in standard mode for indication of min/max values.

Simultaneously pressing of $\boldsymbol{\nabla}$ and $\boldsymbol{\Delta}$ key deletes and actualizes min/max-memory.
A key enters max-memory
$\boldsymbol{\nabla}$ key enters min-memory.

Instructions

After power on the instrument with the inbuilt microcontroller starts with an initial program activating lamp test and readout of memorized parameters in an EEPROM. In case of loosing parameters or any defects in hardware the system generates an error message "HELP". This function prevents damage from the peripherals and human life, totally reset is required. After a new power on, the system remains in lamptest while pressing P-key. Then the unit storages the default parameters and is ready for a new programming.

Setpoints

The following diagrams are showing the switching operation of PFE4 open collector outputs, the hysteresis is free programmable. There are two kinds of operation:

Example: operation current

Operation current means that the open collector will be conducted if reaching the adjusted setpoint.

Example: quiescent current

Quiescent current means that the open collector will be cutoff if reaching the adjusted setpoint.

Program table, example of programming

Program table 1

Program Number (PN)	Function	Remark	Display	Basic parameter after reset
1	Input of desired indication value		0 up to +9999	1000
2	Setting of decimal point for indication value	Press \triangle for desired decimal point		no deci. point
3	Setting of input frequency Adjust the numerically maximum value.	Setting in Hz The decimal point remains unconsidered.		1000.
4	Setting of decimal point for input frequency (corresponds with selected measuring range) The position of the decimalpoint corresponds to the multiplier.	Press $\boldsymbol{\Delta}$ for desired decimal point x corresponds $f^{\star 1}$ x, x corresponds $f^{*} 0.1$ $x, x x$ corresponds $f^{\star} 0.01$ $x, x x x$ corresponds $f^{*} 0.001$	0001 to 9999 000.1 to 999.9 00.01 to 99.99 0.001 to 9.999	no deci. point
5	Input of final value for analog output	Option	0 up to +9999	1000
6	Input of offset for analog output	Option	0 up to +9999	0
7	Setting delay (last input flank up to indication value „0")	Adjustment range: 1 up to 250 seconds	1 up to 250 seconds	10
8	Input of display time		0.2 up to 10.0 s	1.0

During indication times> $\mathbf{7}$ seconds, the most supreme input frequency is limited as follows:

Indication time (s)	Maximum frequnecy
7	9000
8	8000
9	7000
10	6500

Exceeding the limit is indicated by transversal bars „--- -"
The maximally permissible input frequency is controlled by $16 \mathbf{k H z}$, the device receives a reset above this frequency through the built-in watchdog.

Program table 2
 (setpoints)

S1	S2	Function	Display	Basic parameter after reset
PN	PN			
61	66	Setpoint	0 up to +9999	$500 / 600$
62	67	Hysteresis	0 up to +9999	1
63	68	Quiescent current	0	-
		Operating current	1	1

Example for programming

Input:	Frequency	
Measuring value:	$0-8.5 \mathrm{~Hz}$	
Indication:	$0 \mathrm{~Hz}=0.0$	$8.5 \mathrm{~Hz}=300.0$
Display refres. time: 2.0 seconds		
Setpoints:	S1 ==>	60.0 and quiescent current open collctor conducting $=58.0==>$ hysteresis 2.0
	S2 ==>	150.0 and operating current open collector cut off $=80.0==>$ hysteresis 70.0
Analog output: (no setpoints)	0 V output 10 V output	$\begin{array}{llll}==> & \text { display } 0.0 & ==> & \text { measuring value } 0 \mathrm{~Hz} \\ ==> & \text { display } 300.0 & ==> & \text { measuring value } 8.5 \mathrm{~Hz}\end{array}$

(no setpoints) 10 V output ==> display 300.0 ==> measuring value 8.5 Hz

The basic adjustments concerning to the following program example are the ground parameters after a total reset occuring through a power on with pressing P-key (see previous page).

Program advices

Pressing the P-key enters always the program mode with program number 1. The „P1" begins to blink in change with the current value after 3 seconds. After further 4 seconds the system leaves the program mode and goes to the standard mode. In Program mode pressing $\boldsymbol{\nabla}$ or $\boldsymbol{\Delta}$ key selects the current values which are free scalable with both the keys. All parameters will be memorized automatically after leaving program mode.

Example for programming

Enter program mode

			$\mathbf{1}$

To memorized value with $\boldsymbol{\nabla}$ or $\mathbf{\Delta}$.

Set free scalable value.

To program number 2 with \mathbf{P} and \mathbf{A}

To memorized value with $\boldsymbol{\nabla}$ or $\boldsymbol{\Delta}$.

Set decimal point.

To program number 3 with \mathbf{P} and

To memorized value with ∇ or $\boldsymbol{\Delta}$.

Set the free scalable input frequency in Khz. Decimal point unconsidered.

To memorized value with $\boldsymbol{\nabla}$ or $\mathbf{\Delta}$.

Set decimal point.

8.500

To program number 8 with \mathbf{P} and $\mathbf{\Delta}$.

To memorized value with $\boldsymbol{\nabla}$ or $\mathbf{\Delta}$.

Set display time.

The following programming steps are necessary for the setpoint programming of S1 and S2 only.

To program number 61 with \mathbf{P} and $\mathbf{\Delta}$.

To memorized value with $\boldsymbol{\nabla}$ or $\mathbf{\Delta}$.

Set free scalable value for setpoint S1.

To program number 62 with \mathbf{P} and $\mathbf{\Delta}$

Set hysteresis of S1.

To program number 63 with \mathbf{P} and $\mathbf{\Delta}$.

Set quiescent current.

To program number 66 with \mathbf{P} and \mathbf{A}

To memorized value with $\boldsymbol{\nabla}$ or \boldsymbol{A}

Set free scalable value for setpoint S 2 .

To program number 67 with \mathbf{P} and $\mathbf{\Delta}$.

Set hysteresis of S2.

Example for programming, Connection diagrams

Terminal holding for different sensors

Namur

3-wire NPN

3-wire PNP

[^0]: CE-sign
 For unlimited use of the instrument within the directives for electromagnetic compatibility 89/336/EC frequency input wires have to be used with shielded cable and cable's shield connected to earth ground at one end only.

