- Standard: 2 setpoints, min/max memory
- Mounting into panels with thickness up to 50 mm - optional analogue output

ORDER NUMBER OF TYPE
2 wire PTE 4.606.3522B $\left(600,0^{\circ} \mathrm{C}\right)$

Power supply 115 VAC
(connection via terminal 14 and 15)
2 wire PTE 4.606.3422B (600,0$\left.{ }^{\circ} \mathrm{C}\right)$

Power supply 24 VDC
galvanic insulated - (15=plus, 14= minus)
2 wire PTE 4.606.3722B (600, $0^{\circ} \mathrm{C}$)

Options

- green LED
- Protection IP54
- Protection IP65
- Analog output 0-10 VDC (12 bit)
- Analog output 0-20 mA/load 500Ω (12 bit)
- Analog output 4-20 mA/load 500Ω (12 bit)
- Analog output 0-10 VDC (12 bit)
(supply voltage 24 VDC galvanic insulated)
- Analog output 0-20 mA/load 500Ω (12 bit) (supply voltage 24 VDC galvanic insulated)
- Analog output 4-20 mA/load 500Ω (12 bit) (supply voltage 24 VDC galvanic insulated)
- Other power supplies on demand

Technical data

[^0]
Connection diagram, programming, remarks

Setting

1. Connect the instrument according to the wiring diagram.
2. After power on, the instrument runs into a lamptest and returns back to the standard mode.
3. Pressing the \mathbf{P}-key enters the program mode with indication of $\mathbf{P} \mathbf{2}$ on the display.
4. Pressing the \mathbf{P}-key and $\mathbf{\Delta}$-key simultaneously steps through the different program numbers.
5. Pressing $\mathbf{\Delta}$ or $\boldsymbol{\nabla}$-key shows the current values.
6. To change values use $\mathbf{\Lambda}$ or $\boldsymbol{\nabla}$-key.
7. The remaining values will be memorized automatically 7 seconds after the last touch of key with leaving program mode.

Additional key-functions in standard mode for indication of $\mathbf{m i n} / \mathrm{max}$ values.

Simultaneously pressing of $\boldsymbol{\nabla}$ and $\boldsymbol{\Delta}$ key deletes and actualizes min/max-memory
A key enters max-memory
∇ key enters min-memory.

Instructions

After power on the instrument with his inbuilt microcontroller starts with an initialprogram activating lamp test and readout of memorized parameters in an EEPROM.

The following diagrams are showing the switching operation of PVE4 relay contacts. The hysteresis is free programmable. There are two kinds of operation:

Example: operation current

Example: quiescent current

Operation current means that the relay will be pulled in if reaching the adjusted setpoint.

Quiescent current means that the relay will be dropped out if reaching the adjusted setpoint.

Operation, setting instructions

Program table 1

Program- Number (PN)	Function	Remark	Display	Basic parameters after reset
2	Sensor and line balancing	Temperature is displayed	0 to +/-20.0	0.0
3	Selection between ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$	Celsius=0 / Fahrenheit=1	$0 / 1$	0
4	Input of display time	Display time $=$ measuring time Method of measurement integrating	0.2 to 10.0 s	1.0
5	Input of final value for analog output	Option	-999 to +9999	500.0
6	Input of offset for analog output	Option	-999 to +9999	0.0

Program table 2
 (setpoints)

S1	S2	Function	Display	Basic parameters after reset
PN	PN			
61	66	Setpoint	-999 to +9999	$100.0 / 150.0$
62	67	Hysteresis	0 to +9999	$0.1 / 0.1$
63	68	Quiescent current	0	-
		Operating current	1	$1 / 1$

Example for programming

Temperature sensor:	PT1000		
Connection:	2-wire		
Display:	0.0 up to $600.0^{\circ} \mathrm{C}$		
Display refresh time:	2.0 seconds		
Setpoints:	$\mathrm{S} 1==>$		60.0 and quiescent current
:---			
relay pull in $=58.0==>$ hysteresis 2.0			

Analog output:

0 V output	$==>$	display 0.0	$==>$	$0.0^{\circ} \mathrm{C}$
10 V output	$==>$	display 600.0	$==>$	$600.0^{\circ} \mathrm{C}$

The basic adjustments concerning to the following program example are the ground parameters after a total reset occuring through a power on with pressing P-key (see previous page).

Program advices:
Pressing the \mathbf{P} - key enters always the program-mode with program number 2. The $\mathbf{P} 2$ begins to blink in change with the current value after 3 seconds. Further 4 seconds, the system leaves the program mode and goes to the standard mode. In program mode pressing $\boldsymbol{\nabla}$ or $\boldsymbol{\Delta}-\mathrm{key}$ selects the current values which are free scalable with both the keys. All the other parameters will be memorized automatically after leaving program mode.

Programming.
Switch power on!

Lamp test

B.8.8.8.

Set PT1000 simulator to $0^{\circ} \mathrm{C}$.
The indication depends on the used cable length

Sensor and line balancing.

To program number 3 with \mathbf{P} and \mathbf{A}

To program number 4 with \mathbf{P} and \mathbf{A}

Set display time

Example for programming

The following programming steps are necessary for the setpoint programming of S1 and S2 only.

To program number 61 with \mathbf{P} and \mathbf{A}.

To memorized value with ∇ or $\mathbf{\Delta}$.

Set free scalable value for setpoint S1.
EITIF!

To program number 62 with \mathbf{P} and \mathbf{A}.

Set hysteresis for S1

To program number 63 with \mathbf{P} and \mathbf{A}.

To memorized value with $\boldsymbol{\nabla}$ or \mathbf{A}.

Set quiescent current

To program number 66 with \mathbf{P} and \mathbf{A}.

To memorized value with ∇ or \mathbf{A}.
1500^{\cdots}

Set free scalable value for setpoint S2.

To program number 67 with \mathbf{P} and $\mathbf{\Delta}$.

To memorized value with ∇ or \mathbf{A}.

Set hysteresis for S2.

To program number 68 with \mathbf{P} and $\mathbf{\Delta}$.

Set operation current.

Programming finished.
All programmed values are memorized after 7 seconds. Jumps back into standard mode automatically.

The program numbers 5 and 6 are available with option analogue output only.

To program number 5 with \mathbf{P} and \mathbf{A}.

To memorized value with ∇ or $\boldsymbol{\Delta}$.

Set free scalable final indication value for analog output.

To program number 6 with \mathbf{P} and \mathbf{A}.

Programming finished.

All programmed values are memorized after 7 seconds. Jumps back into standard mode automatically.

Setting possibilities of the jumper field on the rear side.

[^0]: CE-sign
 For unlimited use of the instrument within the directives for electromagnetic compatibility 89/336/EC measuring wires have to be used with shielded cable and cable's shield connected to earth ground at one end only.

