

ORDER NUMBER OF TYPE 2-wire $\left(600,0^{\circ} \mathrm{C}\right)$
PTE 4.206.6522B
3+2-wire $\left(600,0^{\circ} \mathrm{C}\right)$
PTE 4.306.6522B

Power supply 115 VAC
(connection via terminal 10 and 11)
2-wire $\left(600,0^{\circ} \mathrm{C}\right)$
PTE 4.206.6422B
$3+2$-wire $\left(600,0^{\circ} \mathrm{C}\right)$
PTE 4.306.6422B

Power supply 24 VDC
galvanic insulated (11=plus, 10=minus)
2-wire $\left(600,0^{\circ} \mathrm{C}\right)$
PTE 4.206.6722B
$3+2$-wire $\left(600,0^{\circ} \mathrm{C}\right)$
PTE 4.306.6722B

## Options

- green LED
- Protection IP54
- Protection IP65
- Analog output 0-10 VDC (12 bit)
- Analog output 0-20 mA/load $500 \Omega$ (12 bit)
- Analog output 4-20 mA/load $500 \Omega$ (12 bit)
- Analog output 0-10 VDC (12 bit)
(supply voltage 24 VDC galv. insulated)
- Analog output 0-20 mA/load $500 \Omega$ (12 bit) (supply voltage 24 VDC galv. insulated)
- Analog output 4-20 mA/load $500 \Omega$ (12 bit) (supply voltage 24 VDC galv. insulated)

With analog output setpoint S1 is not available!

- Dimension strips are selectable (max. 7 characters)
- Other power supplies on demand


## Technical data

| Dimensions | Housing <br> Assembly cut out Fastening Housing material Protective system <br> Weight Connection | $72 \times 36 \times 97 \mathrm{~mm}$, including screw terminal $68.0^{+0.7} \times 33.0^{+0.6} \mathrm{~mm}$ <br> special quick plastic clamp proper to fix in wall thickness up to 50 mm <br> PC/ABS blend, colour black, UL94V-0 <br> at the front IP40 <br> connection IP00 <br> approx. 0.190 kg <br> at the rear side via screw terminals up to $2.5 \mathrm{~mm}^{2}$ |
| :---: | :---: | :---: |
| Input | PT100 <br> Measuring range <br> Resolution <br> Linearization <br> Sensor current | 2 wire, 3 wire -99.9 up to $+600.0^{\circ} \mathrm{C}$ $0.1^{\circ} \mathrm{C}$ according to DIN IEC751 approx. 1 mA |
| Output | Relay output Switching cycles <br> Open collector <br> Analogue output | charge charge 240 VAC/0.25 A - $24 \mathrm{VDC} / 1 \mathrm{~A}$, with ohm resistive burden <br> $2 * 10^{5}$ at max. contact rating <br> 10 * $10^{6}$ mechanically <br> supply by customers $\left(\mathrm{U}_{\mathrm{B}}=5-40 \mathrm{~V} / \mathrm{I}_{\text {max }}=100 \mathrm{~mA}\right)$ <br> $\left.\begin{array}{l}0-10 \mathrm{VDC}(12 \mathrm{bit}) \\ 0-20 \mathrm{~mA}(12 \mathrm{bit}) \text { - load } 500 \mathrm{Ohm} \\ 4-20 \mathrm{~mA}(12 \mathrm{bit})-\text { load } 500 \mathrm{Ohm}\end{array}\right\}$ <br> The analogue output is galvanic insulated from the measuring input! |
| Accuracy | Resolution <br> Measuring fault <br> Temp. drift <br> Measuring principle | ```0.1 }\mp@subsup{}{}{\circ}\textrm{C +/-0.2 % of measuring value, +/-1 digit 100 ppm/K voltage/frequency converter``` |
| Power unit | Supply voltage Power consumption | 230/115 VAC +/- 10 \% ( $50-60 \mathrm{~Hz}$ ), 24 VDC +/-10 \% galvanic insulated approx. 3 VA |
| Indication | Display <br> Overflow Indication time | LED with 7 segments, 14 mm high, red 4-digit = indication 9999 indication of 4 transversal bars from 0.2 up to 10.0 seconds adjustable |
| Ambient conditions | Working temperature Storing temperature | $\begin{aligned} & 0 \text { up to }+60^{\circ} \mathrm{C} \\ & -20 \text { up to }+80^{\circ} \mathrm{C} \end{aligned}$ |

## Housing:



[^0]
## Connection diagram, programming, remarks



## Setting

1. Connect the instrument according to the wiring diagram.
2. After power on, the instrument runs into a lamp test and returns back to the standard mode.
3. Pressing the P-key enters the program mode with indication of $\mathbf{P} 2$ on the display.
4. Pressing the P-key and ©-key simultaneously steps through the different program numbers.
5. Pressing $\mathbf{\Delta}$ or $\boldsymbol{\nabla}$-key shows the current values.
6. To change values use $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$-key.
7. The remaining values will be memorized automatically 7 seconds after the last touch of key with leaving program mode.

## Additional key-functions in standard mode for indication of min/max values.

Simultaneously pressing of $\boldsymbol{\nabla}$ and $\boldsymbol{\Delta}$ key deletes and actualizes min/max-memory.
$\Delta$ key enters max-memory.
$\boldsymbol{\nabla}$ key enters min-memory.

## Instructions

After power on the instrument with his inbuilt microcontroller starts with an initialprogram activating lamp test and readout of memorized parameters in an EEPROM.

The following diagrams are showing the switching operation of PVE4 relay contacts. The hysteresis is free programmable. There are two kinds of operation:

## Example: operation current



Operation current means that the open collector will be pulled in (conducting) if reaching the adjusted setpoint.

## Example: quiescent current



Quiescent current means that the open collector will be dropped out (cutoff) if reaching the adjusted setpoint.

## Operation, setting instructions

## Program table 1

| Program- <br> Number (PN) | Function | Remark | Display | Basic parameters <br> after reset |
| :---: | :--- | :--- | :--- | :--- |
| 2 | Sensor and line balancing | Temperature is displayed | 0 to $+/-20.0$ | 0.0 |
| 3 | Selection between ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ | Celsius=0 / Fahrenheit=1 | $0 / 1$ | 0 |
| 4 | Input of display time | Display time $=$ measuring time <br> Method of measurement integrating | 0.2 to 10.0 seconds | 1.0 |
| 5 | Input of final value for analog output | Option | -999 to +9999 | 500.0 |
| 6 | Input of offset for analog output | Option | -999 to +9999 | 0.0 |

## Program table 2

(setpoints)

| S1 | S2 | Function | Display | Basic parameters after reset |
| :--- | :--- | :--- | :--- | :--- |
| PN | PN |  |  |  |
| 61 | 66 | Setpoint | -999 to +9999 | $100.0 / 150.0$ |
| 62 | 67 | Hysteresis | 0 to +9999 | $0.1 / 0.1$ |
| 63 | 68 | Quiescent current | 0 | - |
|  |  | Operating current | 1 | $1 / 1$ |

## Example for programming

Temperature sensor: PT100
Connection: 2-wire
Display: $\quad 0.0$ up to $600.0^{\circ} \mathrm{C}$
Display refresh time:2.0 seconds
Setpoints
S1 ==> 60.0 and quiescent current
open collector conducting $=58.0==>$ hysteresis 2.0
S2 ==> $\quad 150.0$ and operation current
relay drop out $=80.0==>$ hysteresis 70.0
Analog output: 0 V output $==>$ display $0.0 \quad==>\quad 0.0^{\circ} \mathrm{C}$
(no setpoint S1)
10 V output $==>\quad$ display $600.0 \quad==>\quad 600.0^{\circ} \mathrm{C}$


The basic adjustments concerning to the following program example are the ground parameters after a total reset occuring through a power on with pressing P-key (see previous page).

## Program advices:

Pressing the P-key enters always the program mode with program number 2. The P2 starts to blink in change with the current value after 3 seconds. After further 4 seconds the system leaves the program mode and goes to the standard mode. In program mode pressing $\boldsymbol{\nabla}$ or $\mathbf{\Delta}$-key selects the current values which are free scalable with both the keys. All the other parameters will be memorized automatically after leaving program mode.

## Programming

Switch power on!

## Lamp test

B.B.B.E.

Standard mode


## Set PT100 simulator to $0^{\circ} \mathrm{C}$.

The indication value depends on the used cable length



Sensor and line balancing.



To program number 4 with $\mathbf{P}$ and $\mathbf{\Delta}$.


## Example for programming



Set display time.


The following programming steps are neccessary for the setpoint programming of S1 and S2 only.

To program number 61 with $\mathbf{P}$ and


To memorized value with $\nabla$ or $\mathbf{\Delta}$.


Set free scalable value for setpoint S1


To program number 62 with $\mathbf{P}$ and $\mathbf{A}$


To memorized value with $\boldsymbol{\nabla}$ or $\mathbf{\Delta}$


Set hysteresis for S1.


To program number 63 with $\mathbf{P}$ and


To program number 66 with $\mathbf{P}$ and


To memorized value with $\boldsymbol{\nabla}$ or $\mathbf{\Delta}$.


Set free scalable value for setpoint S2.


To program number 67 with $\mathbf{P}$ and $\mathbf{A}$


To memorized value with $\boldsymbol{\nabla}$ or $\mathbf{A}$


Set hysteresis for S2


To program number 68 with $\mathbf{P}$ and



Set free scalable final indication value for analog output.


To program number 6 with $\mathbf{P}$ and $\mathbf{A}$.


To memorized value with $\boldsymbol{\nabla}$ or $\mathbf{\Delta}$.


## Programming finished.

All programmed values are memorized after 7 seconds. Jumps back into standard mode automatically

Setting possibilities of the jumper field on the rear side


To memorized value with $\nabla$ or $\mathbf{\Delta}$

## Programming finished.

All programmed values are memorized after 7 seconds. Jumps back into standard mode automatically.

The program numbers 5 and 6 are available with option analogue output only.

To program number 5 with $\mathbf{P}$ and $\mathbf{A}$


I
4

Set operating current.



[^0]:    CE-sign
    For unlimited use of the instrument within the directives for electromagnetic compatibility 89/336/EC measuring wires have to be used with shielded cable and cable's shield connected to earth ground at one end only.

