Direct voltage 60 mV -150mV-300mV - microprocessor based technology

- Free scalable indication and setpoints from -999 to +9999
- Standard: 2 setpoints, min/max memory - option: analogue output
- Allows to be placed side by side in grid and mosaics systems up to 50 mm

Options

- green LED
- protection IP54
- Plug in terminal with protection IP40
- Plug in terminal with protection IP54
- Analog output 0-10 VDC - (12 bit)
- Analog output 0-20 mA/load 500Ω
- Analog output 4-20 mA/load 500Ω

With analog output setpoints S1 and S2 are not available!

- Setpoints as open emitter
- Dimension strips selectable (8 characters max.)

Technical data

Dimensions	Housing Assembly cut out Fastening Housing material Protective system Weight Connection	$48 \times 24 \times 90 \mathrm{~mm}$, including screw terminal $45.0^{+0.6} \times 22.2^{+0.3} \mathrm{~mm}$ special quick plastic clamp proper to fix in wall thickness up to 50 mm PC/ABS-Blend, colour black, UL94V-0 at the front IP40 connection IP00 approx. 75 g at the rear side via plug in connector up to $1.5 \mathrm{~mm}^{2}$
Input	Measuring range Input resistance	$0-60 \mathrm{mV}, 150 \mathrm{mV}, 300 \mathrm{mV}$ all ranges are selectable via connection terminal $\text { Ri with } \begin{aligned} 60 \mathrm{mV} & =15 \mathrm{~K} \Omega \\ 150 \mathrm{mV} & =39 \mathrm{~K} \Omega \\ 300 \mathrm{mV} & =75 \mathrm{k} \Omega \end{aligned}$
Output	Open collector Analogue output	2 outputs supply by customers $\left(\mathrm{U}_{\mathrm{B}}=5-40 \mathrm{~V} / \mathrm{I}_{\text {max }}=100 \mathrm{~mA}\right)$ $0-10$ VDC (12 bit) 0-20 mA/load 500 Ohm (12 bit) 4-20 mA/load 500 Ohm (12 bit)
Accuracy	Resolution Non-linearity Temp. drift Measuring principle	$\begin{aligned} & -999 \text { up to }+9999 \text { digit } \\ & +/-0.2 \% \text { of measuring value, }+/-1 \text { digit } \\ & 150 \mathrm{ppm} / \mathrm{K} \\ & \text { voltage/frequency converter } \end{aligned}$
Power unit	Supply voltage Power consumption	24 VDC +/-10 \% galvanic insulated approx. 2 VA
Indication	Display Overflow Time of indication	LED with 7 segments, 10 mm high, red 4-digit = indication 9999 indication of four transversal bars adjustable from 0.1 to 10.0 seconds
Ambient conditions	Working temperature Storing temperature	$\begin{aligned} & 0 \text { up to }+60^{\circ} \mathrm{C} \\ & -20 \text { up to }+80^{\circ} \mathrm{C} \end{aligned}$

Housing:

[^0]
Connection diagram, programming, remarks

5	6	8	9
-	+		+
Option: Analog output (setpoints not available) 24 VDC (galv. insulated)			

Setting

1. Detach front pane with a small screwdriver leading between front pane and housing supported by the eject gap.
2. Connect the instrument according to the wiring diagram.
3. After power on, the instrument runs into a lamp test and returns back to the standard mode.
4. Connect the desired measuring value to the measuring input.
5. Pressing the \mathbf{P}-key enters the program mode with indication of "P1" on the display.
6. Pressing the \mathbf{P}-key and $\mathbf{\Delta}$-key simultaneously steps through the different program numbers .
7. Pressing $\boldsymbol{\triangle}$ or $\boldsymbol{\nabla}$-key shows the current values.
8. To change values use $\boldsymbol{\nabla}$ - or $\mathbf{\Delta}$-key.
9. Memorizing of the values under program number 1 and 2 by pressing Plus- and $\boldsymbol{\nabla}$-key simultaneously . Four transversal bars are indicating memorization.
10. Otherwise the remaining values will be memorized automatically 7 seconds after the last touch of key with leaving program mode.

Additional key-functions in standard-mode for indication of min/max values.

Simultaneously pressing of $\boldsymbol{\nabla}$ and $\boldsymbol{\Delta}$ key deletes and actualizes min/max-memory.
Δ key enters max-memory.
$\boldsymbol{\nabla}$ key enters min-memory.

Instructions

After power on the instrument with his inbuilt microcontroller starts with an initialprogram activating lamp test and readout of memorized parameters in an EEPROM. In case of loosing parameters or any defects in hardware the system generates an error message "HELP". This function prevents damage from peripherials and human life, totally reset is required. After a new power on, the system remains in lamp test while pressing P-key. Then the unit storages the default parameters and is ready for new programming.

The unit you've bought provides several different voltage inputs as well as optional analog output and open collector setpoints. In order to achieve the maximum value indication of 9999 , the following minimum input voltage are required at the various measuring inputs:

Measuring input	60 mV	150 V	300 mV
$\mathrm{U} / \mathrm{I} \min$	30 mV	60 mV	150 mV
$\mathrm{U} / \mathrm{I} \max$	80 mV	180 mV	360 mV

The following diagrams are showing the switching operation of PVE4 open collector outputs, the hysteresis is free programmable. There are two kinds of operation:

Example: operation current

Operation current means that the open collector will be conducted if reaching the adjusted setpoint.

Example: quiescent current

Quiescent current means that the open collector will be cutoff if reaching the adjusted setpoint.

Operation, setting instructions

Program table 1

ProgramNumber (PN)	Function	Remark	Display	basic parameter after reset
1	Input of the desired indication value	Feed measured magnitude (acknowledged by pressing key \mathbf{P} and $\boldsymbol{\nabla}$) e.g. 60 mV measuring input $=$ final value 3500	-999 to +9999	2000
2	Input of offset for indication value	Feed measured magnitude (acknowledged by pressing key \mathbf{P} und $\boldsymbol{\nabla}$) e.g. 0 mV measuring input = initial value 0	-999 to +9999	0
3	Setting of decimal point	Press $\boldsymbol{\Delta}$ until desired decimal point is shown		no dec. point
4	Input of display time	Display time = measuring time Method of measurement integrating	$\begin{aligned} & \hline 0.1 \text { to } \\ & 10.0 \text { seconds } \\ & \hline \end{aligned}$	1.0
5	Input of final value for analog output	Option	-999 to +9999	2000
6	Input of offset for analog output	Option	-999 to +9999	0

Program table 2 (Setpoints)

S1	S2	Function	Display	basic parameter after reset
PN	PN			
61	66	Setpoint	-999 to +9999	$500 / 1500$
62	67	Hysteresis	0 to +9999	1
63	68	Quiescent current	0	0
		Operating current	1	-

Example for programming

Measuring input:
 Measuring value:
 Display:
 Displ.refresh time:
 Setpoints:
 Analog output:
 (no setpoints)

$0-150 \mathrm{mV}$
100 mV
$0 \mathrm{mV}=0.0 \quad 100 \mathrm{mV}=300.0$
2.0 seconds

S1 ==>
60.0 and quiescent current
open collector conducting $=58.0==>$ hysteresis 2.0
150.0 and operation current
open collector cut off $=80.0==>$ hysteresis 70.0
0 V output $==>$ display $0.0==>$ measuring value 0 mV
10 V output==> display $300.0==>$ measuring value 100 mV

The basic adjustments concerning to the following program example are the ground parameters after a total reset occuring through a power on with pressing P-key (see previous page).

Program advices:

Pressing the P-key enters always the program mode with program number 1. The "P1" starts to blink in change with the current value after 3 seconds. After further 4 seconds the system leaves the program mode and goes to the standard mode. In program mode pressing $\boldsymbol{\nabla}$ or $\boldsymbol{\Delta}$-key selects the current values which are free scalable with both the keys. In program number 1 and 2 the memorization will be executed by pressing \mathbf{P} and ∇ simultaneously - four transversal bars indicate the storage. All the other parameters will be memorized automatically after leaving program mode.

Programming
Switch power on!
Lamp test

B.B.B.B.

Standard mode

Connect 100 mV to the measuring input. Enter program mode

Set free scalable value

Memorize value with \mathbf{P} and $\boldsymbol{\nabla}$. Take over by display of transversal bars.

To program-number 2 with \mathbf{P} und

Connect measuring value 0 mV .
To memorized value with ∇ or $\boldsymbol{\Delta}$

Memorize value with \mathbf{P} and $\boldsymbol{\nabla}$. Take over by display of transversal bars.

Example for programming

Set decimal point.

To program number 4 with \mathbf{P} and $\mathbf{\Delta}$.

Set display time.

The following programming steps are necessary for the setpoint programming of S1 and S2 only.

To program number 61 with \mathbf{P} and \mathbf{A}.

Set free scalable value for setpoint S1

To program number 62 with \mathbf{P} and $\mathbf{\Delta}$.

To memorized value with $\boldsymbol{\nabla}$ or \mathbf{A}.

Set hysteresis for S1.

To program number 63 with \mathbf{P} and

To memorized value with ∇ or

To program number 66 with \mathbf{P} and \mathbf{A}

To memorized value with $\boldsymbol{\nabla}$ or $\mathbf{\Delta}$.

Set free scalable value for setpoint S2.

To program number 67 with \mathbf{P} and

To memorized value with $\boldsymbol{\nabla}$ or $\boldsymbol{\Delta}$

Set hysteresis for S2

To program number 68 with \mathbf{P} and $\mathbf{\Delta}$

Set operation current

Programming finished.

All programmed values are memorized after 7 seconds. Jumps back into standard mode automatically.

The program numbers 5 and 6 are available with option analogue output only.

To memorized value with ∇ or $\mathbf{\Delta}$.

Set free scalable final indication value for analogue output.

To program number 6 with \mathbf{P} and \mathbf{A}.

To memorized value with $\boldsymbol{\nabla}$ or $\mathbf{\Delta}$.

Programming finished.

All programmed values are memorized after 7 seconds. Jumps back into standard mode automatically.

[^0]: CE-sign
 For unlimited use of the instrument within the directives for electromagnetic compatibility 89/336/EC analogue input wires have to be used with shielded cable and cable's shield connected to earth ground at one end only.

