Alternating voltage, alternating current

- Microprocessor based technology
- Free scalable display and setpoints from -999 up to +9999
- Standard: 2 setpoints, min/max memory - optional analogue output
- Mounting into panels with thickness up to $\mathbf{5 0} \mathbf{~ m m}$

ORDER NUMBER OF TYPE
Standard
True effective value RMS
PVE 4.004.3522B
PVE 4.104.3522B

Caution!

With high input voltages 100 VAC/300 VAC, always connect terminal 3 (0V) to N-conductor. Change jumper only in voltage-free state and use an insulated screwdriver when adjusting the potentiometer.

Options

- green LED
- Protection IP54 at the front
- Plug in terminal with protection IP40
- Plug in terminal with protection IP54
- Analog output 0-10 VDC (12 bit)
- Analog output 0-20 mA/load 500Ω (12 bit)
- Analog output $4-20 \mathrm{~mA} / \mathrm{load} 500 \Omega$ (12 bit)
- Analog output 0-10 VDC (12 bit)
- Analog output 0-20 mA/load 500Ω (12 bit) (power supply 24 VDC galvanic insulated)
(power supply 24 VDC galvanic insulated)
- Other power supplies on demand
- Measuring range 1 A on demand

Technical data

Dimensions	Housing Assembly cut out Fastening Housing material Protective system weight connection	$96 \times 24 \times 131 \mathrm{~mm}$, including screw terminal $92.0^{+0.8} \times 22.0^{+0.6} \mathrm{~mm}$ special quick plastic clamp proper to fix in wall thickness up to 50 mm PC/ABS-plastic blend, colour black, UL94V-0 at the front IP40 connection IP00 approx. 0.290 kg at the rear side via screw terminals up to $2.5 \mathrm{~mm}^{2}$
Input	Measuring range	$0-20 \mathrm{~V}, 100 \mathrm{~V}, 400 \mathrm{~V}, 5 \mathrm{~A}$ - (optional 1 A) all ranges are selectable via connection terminal $\begin{aligned} \text { Ri with } 100 \mathrm{~V} & =1 \mathrm{M} \Omega & 20 \mathrm{~V} & =200 \mathrm{~K} \Omega \\ 300 \mathrm{~V} & =4 \mathrm{M} \Omega & 5 \mathrm{~A} & =56 \mathrm{~m} \Omega \\ 1 \mathrm{~A} & =276 \mathrm{~m} \Omega & & \end{aligned}$
Output	Relay output Switching cycles Open collector Analogue output	charge $240 \mathrm{VAC} / 0.25 \mathrm{~A}-24 \mathrm{VDC} / 1 \mathrm{~A}$, with ohm resistive burden 2 * 10^{5} at max. contact rating 10 * 10^{6} mechanically supply by customers $\left(\mathrm{U}_{\mathrm{B}}=5-40 \mathrm{~V} / \mathrm{I}_{\text {max }}=100 \mathrm{~mA}\right)$ $\left.\begin{array}{l}0-10 \mathrm{VDC}(12 \mathrm{bit}) \\ 0-20 \mathrm{~mA}(12 \mathrm{bit}) \text { - load } 500 \text { Ohm } \\ 4-20 \mathrm{~mA}(12 \mathrm{bit}) \text { - load } 500 \text { Ohm }\end{array}\right\}$ The analogue output is galvanic insulated from the measuring input!
Accuracy	Resolution Temp. drift Measuring principle Frequency range	$\begin{aligned} & -999 \text { up to }+9999 \\ & \text { 1~200 ppm/K }-\mathrm{U} \sim 100 \mathrm{ppm} / \mathrm{K} \\ & \text { voltage/frequency transformer } \\ & \text { nominal precision } 40 \mathrm{~Hz} \text { up to } 1000 \mathrm{~Hz} \end{aligned}$
PVE 4.0x4.3xx2B	Measuring fault	voltage range: $+/-0.5 \%$ of measuring value, $+/-0.07 \%$ of final value $0-1$ A range $+/-0.5 \%$ of measuring value, $+/-0.07 \%$ of final value $1-5$ A range $+/-1 \%$ of measuring value, $+/-0.07 \%$ of final value
PVE 4.1x4.3xx2B	Measuring (input) Measuring fault	via rectifier - (effective value with sine waveform only) voltage range: $\quad+/-0.5 \%$ of measuring value, $+/-0.07 \%$ of final value, crestfactor 3 $0-1$ A range $\quad+/-0.5 \%$ of measuring value, $+/-0.07 \%$ of final value, crestfactor 3 1-5 A range $+/-1 \%$ of measuring value, +/-0.07 \% of final value, crestfactor 3
	Measuring (input)	True effective value RMS
Power unit	Supply voltage Power consumption	230/115 VAC +/- 10 \% ($50-60 \mathrm{~Hz}$), 24 VDC +/-10 \% galvanic insulated approx. 5 VA
Indication	Display Overflow Indication time	LED with 7 segments, 14 mm high, red 4-digit = indication 9999 indication of 4 transversal bars from 0.1 up to 10.0 seconds adjustable
Ambient conditions	Working temperature Storing temperature	$\begin{aligned} & 0 \text { up to }+60^{\circ} \mathrm{C} \\ & -20 \text { up to }+80^{\circ} \mathrm{C} \end{aligned}$

Housing:

[^0]
Wiring diagram, programming, instructions

Setting

1. Connect the instrument according to the wiring diagram.
2. After power on, the instrument runs into a lamptest and returns back to the standard mode.
3. Connect the desired measuring value to the measuring input.
4. Pressing the \mathbf{P}-key enters the program mode with indication of " P 1 " on the display.
5. Pressing the \mathbf{P}-key and $\mathbf{\Delta}$-key simultaneously steps through the different program numbers.
6. Pressing $\boldsymbol{\triangle}$ or $\boldsymbol{\nabla}$-key shows the current values.
7. To change values use $\boldsymbol{\nabla}$ - or $\mathbf{\Delta}$-key.
8. Memorizing of the values under program number 1 and 2 by pressing Plus- and $\boldsymbol{\nabla}$-key simultaneously. Four transversal bars are indicating memorization.
9. Otherwise the remaining values will be memorized automatically 7 seconds after the last touch of key with leaving program mode.

Additional key-functions in standard mode for indication of min/max values.

Simultaneously pressing of $\boldsymbol{\nabla}$ and $\boldsymbol{\Delta}$ key deletes and actualizes min/max-memory.
A key enters max-memory
$\boldsymbol{\nabla}$ key enters min-memory.

Instructions

After power on the instrument with his inbuilt microcontroller starts with an initial program activating lamp test and readout of memorized parameters in an EEPROM. In case of loosing parameters or any defects in hardware the system generates an error message "HELP". This function prevents damage from peripherials and human life, totally reset is required. After a new power on, the system remains in lamptest while pressing P-key. Then the unit storages the default parameters and is ready for new programming.

The unit you have bought provides several different voltages and current inputs as well as optional analog output, relay contacts and open collector setpoints. In order to achieve the maximum value indication of 9999, the following minimum input voltages/currents are required at the various measuring inputs:

Measuring input	20 V	100 V	300 V	1 A	5 A
$\mathrm{U} / \mathrm{I} \min$	10 V	50 V	200 V	0.4 A	2.5 A
$\mathrm{U} / \mathrm{I} \max$	30 V	150 V	300 V	1 A	5 A

The following diagrams are showing the switching operation of PVE4 relay contacts. The hysteresis is free programmable. There are two kinds of operation:

Example: operation current

Example: quiescent current

Operation current means that the relay will be pulled in if reaching the adjusted setpoint.

Quiescent current means that the relay will be dropped out if reaching the adjusted setpoint.

Program table, example for programming

Program table 1

ProgramNumber (PN)	Function	Remark	Display	Basic parameter after reset
1	Input of desired indication value	Feed measured magnitude (acknowledged by pressing key \mathbf{P} and $\boldsymbol{\nabla}$) e.g. 100 V measuring input=final value 3500	-999 to +9999	2000
2	Input of offset for indication value	Feed measured magnitude (acknowledged by pressing key \mathbf{P} and $\boldsymbol{\nabla}$) e.g. 0.1 A measuring input = initial value 0	-999 to +9999	0
3	Setting of decimal point	Press Δ until desired decimal point is shown		no decimal point
4	Input of display time	Display time = measuring time Method of measurement integrating	0.1 to 10.0 seconds	1.0
5	Input of final value for analog output	Option	-999 to +9999	2000
6	Input of offset for analog output	Option	-999 bis +9999	0

Program table 2 (setpoints)

S1	S2	Function	Display	Basic parameter after reset
PN	PN			
61	66	Setpoint	-999 to +9999	$500 / 1500$
62	67	Hysteresis	0 to +9999	1
63	68	Quiescent current	0	0
		Operating current	1	-

Example for programming

The basic adjustments concerning to the following program example are the ground parameters after a total reset occuring through a power on with pressing P-key (see previous page).

Program advices:

Pressing the P-key enters always the program mode with program number 1. The "P1" starts to blink in change with the current value after 3 seconds. After further 4 seconds the system leaves the program mode and goes to the standard mode. In program mode pressing $\boldsymbol{\nabla}$ or $\boldsymbol{\Delta}$-key selects the current values which are free scalable with both the keys. In program number 1 and 2 the memorization will be executed by pressing "P" and ∇ simultaneously - four transversal bars indicate the storage. All the other parameters will be memorized automatically after leaving program mode.

Example for programming

The following programming steps are necessary for the setpoint programming of S1 and S2 only.

To program number 61 with \mathbf{P} and \mathbf{A}.

To memorized value with ∇ or \boldsymbol{A}.
$5 \cdot 0^{-1 / 2}$

Free scalable value for setpoint S1.

To program number 62 with \mathbf{P} and \mathbf{A}

To memorized value with $\boldsymbol{\nabla}$ or $\mathbf{\Delta}$.

Set hysteresis for S1.
I.

To memorized value with $\boldsymbol{\nabla}$ or $\mathbf{\Delta}$.

To program number 66 with \mathbf{P} and $\mathbf{\Delta}$.

To memorized value with ∇ or $\mathbf{\Delta}$.
$1500^{-1 .}$

Set free scalable value for setpoint S2.

To program number 67 with \mathbf{P} and \mathbf{A}

To memorized value with $\boldsymbol{\nabla}$ or $\mathbf{\Delta}$.

To program number 68 with \mathbf{P} and \mathbf{A}

Set operation current.

Programming finished
All programmed values are memorized after 7 seconds. Jumps back into standard mode automatically.

The program numbers 5 and 6 are available with option analogue output only.

To program number 5 with \mathbf{P} and \mathbf{A}.

To memorized value with ∇ or $\boldsymbol{\Delta}$.

Set free scalable final indication value for analog output.

To program number 6 with \mathbf{P} and $\mathbf{\Delta}$.

To memorized value with ∇ or \mathbf{A}

Programming finished.

All programmed values are memorized after 7 seconds. Jumps back into standard mode automatically.

Setting possibilities of the jumper field on the rear side.

Programming
blocked

Programming
limited
(PN61-68 free)

[^0]: CE-sign
 For unlimited use of the instrument within the directives for electromagnetic compatibility 89/336/EC analogue input wires have to be used with shielded cable and cable's shield connected to earth ground at one end only.

