

PWE 4.20x.1592B

Power supply 115 VAC
(connection via terminal 14 and 15)
Power supply 24 VDC

- galv. insulated - (15=plus, 14=minus)

PWE 4.20x.1492B

PWE 4.20x.1792B

Options

- Green LED
- Plug in terminal and protection IP65
- Analog output 0-10 VDC (12 bit)
- Analog output 0-20 mA/load 500Ω (12 bit)
- Analog output 4-20 mA/load 500Ω (12 bit)
- Analog output 0-10 VDC (12 bit)
(supply voltage 24 VDC galvanically insulated)
- Analog output 0-20 mA/load 500Ω (12 bit)
- Analog output 4-20 mA/load 500Ω (12 bit) (supply voltage 24 VDC galvanically insulated)
(supply voltage 24 VDC galvanically insulated)
- Other power supplies on demand

Technical data

Dimensions	Housing Assembly cut out Fastening Housing material Protective system Weight Connection	$96 \times 48 \times 134$ including screw terminal $92.0^{+0.8} \times 45.0^{+0.6} \mathrm{~mm}$ special quick plastic clamp proper to fix in wall thickness up to 50 mm PC/ABS-plastic blend, colour black, UL94V-0 at the front IP54 connection IP00 approx. 0.450 kg At the rear side via screw terminal up to $2.5 \mathrm{~mm}^{2}$
Input	Measuring range	$1 \mathrm{mV} / \mathrm{V}-2 \mathrm{mV} / \mathrm{V}-3.3 \mathrm{mV} / \mathrm{V}$
Output	Sensor supply Relay output Switching cycles Analogue output	$10 \mathrm{VDC} / 350 \Omega$ (power supply for other strain gauges) charge $230 \mathrm{VAC} / 5 \mathrm{~A}-30 \mathrm{VDC} / 2 \mathrm{~A}$, with ohm resistive burden $0.5 * 10^{5}$ at max. contact rating $5 * 10^{6}$ mechanically Separation appropriate to DIN EN 50178/ Specification appropriate to DIN EN60255 $0-10$ VDC (12 bit) $\left.\begin{array}{l}0-20 \mathrm{~mA}(12 \text { bit) }- \text { load } 500 \mathrm{Ohm} \\ 4-20 \mathrm{~mA}(12 \text { bit) }- \text { load } 500 \mathrm{Ohm}\end{array}\right\}$ The analogue output is galvanic insulated from the measuring input!
Accuracy	Resolution Measuring fault Temp. drift Measuring principle	$\begin{aligned} & -999 \text { up to }+9999 \\ & +/-0.2 \% \text { of measuring range, }+/-1 \text { digit } \\ & 100 \mathrm{ppm} / \mathrm{K} \\ & \text { voltage/frequency converter } \end{aligned}$
Power unit	Supply voltage Power consumption	230/115 VAC +/- 10 \% ($50-60 \mathrm{~Hz}$), 24 VDC +/-10 \% galvanic insulated approx. 5 VA2
Indication	Display Overflow Underflow Measuring time	LED with 7 segments, 14 mm high, red 4-digit = indication 9999 4 bars up 4 bars down adjustable from 0.2 up to 10.0 seconds
Ambient conditions	Working temperature Storing temperature	$\begin{aligned} & 0 \text { up to }+60^{\circ} \mathrm{C} \\ & -20 \text { up to }+80^{\circ} \mathrm{C} \end{aligned}$

Housing:

[^0]
Wiring diagram, programming, instructions

Adjustment (also see programming example on the next page)

Connect the instrument according to the wiring diagram. Connect screening of sensor line with protective conductor.
Switch on supply voltage. There is a segment test with switching-over to operating mode.
Charge DMS probe or sensor, respectively, with minimum load (in the case of a scale, by putting on a reference weight). Press program key [P]. Program number 1 lit.
Change the program number by simultaneously pressing program key $[\mathrm{P}]$ and key $[\mathbf{A}]$.
Pressing the key $[\mathbf{A}]$ or $[\boldsymbol{\nabla}]$ results in a change of indication to the value stored under this program number. Change the indicated value by pressing key [$\boldsymbol{\nabla}$] or [\mathbf{A}].
Effect storing by pressing keys $[P] \&[\boldsymbol{\nabla}]$.
Charge DMS probe or sensor, respectively, with maximum load (in the case of a scale, by putting-on a reference weight).
. Press program keys $[P] \&[\mathbf{A}]$ until program number 2 lights up and continue in correspondance with item 6.
11. Without pressing of any key, the device changes to the operating mode after 7 seconds. With this, final storing of all adjusted values is effected.

Calling of MIN/MAX values from memory

Press key [$\mathbf{\Delta}$] to indicate MAX memory. Press key [$\boldsymbol{\nabla}$] to indicate MIN memory. Simultaneous pressing of keys [$\mathbf{\nabla}$] and [\mathbf{A}] deletes and updates the MIN/MAX memory.

Counterbalancing

$\underline{\text { Operator }}$	$\underline{\text { Device }}$
Press key [0] (TARA)	Indication of counterbalancing with continuous zeros. The "offset" value stored under PN2 is indicated.

Note

Overflow/underflow

In the case of a display overflow, the display shows 4 horizontal bars in the upper indication section. In the case of a display underflow, the display shows 4 horizontal bars in the lower indication section. If PN8 $=1 \ldots 3$ has been selected, then the starting value, defined under PN1 as -12.5% of the measuring range, is evaluated as the underflow value and the end value, defined under PN2 as $+12.5 \%$ of the measuring range, is evaluated as the overflow value. With the configuration PN8 $=4 \ldots 6$, only the sensor sensitivity is tested and used for the evaluation of an overflow or underflow. The calibration points defined under PN1 and PN2 are used for the linearization.

Error messages

After switching-on of the supply voltage, the device starts a self-test including a segment test (all LEDs lit). Should any disturbance occur during this procedure, this is indicated by "HELP" on the display. That is also valid with running operation. The function serves to grant security to all surrounding components and installations. After a „HELP" indication, a basic reset has to be performed by pressing key \mathbf{P} and, simultaneously, connecting the supply voltage. As long as key \mathbf{P} is pressed, the display performs a segment test and then the parameter entered ex works are taken over. After this, the device has to be programmed to have the parameters required by the user.

Analog output

The parameters of the analog output refer to the values set under PN1 and PN2. After counterbalancing, the analog output does not shift its zero point. With this output, the measuring value actually present on the input is represented.

Switching points

The following diagram illustrates the switching behaviour of the relay outputs for devices having switching points. The parameters for each switching point are freely programmable. In the operating current mode, the respecting relay actuates with reaching the switching threshold, in the quiescent current mode, the respecting relay falls off when the switching threshold has been reached. This way. a failure of the supply voltage can be indicated by an alarm.

Definition: Hysteresis is the width of the "window" between two threshold values.

Example: operation current

Operation current means that the relay will be pulled in if reaching the adjusted setpoint.

Example: quiescent current

Quiescent current means that the relay will be dropped out by reaching the adjusted setpoint.

Operation, setting instructions

Program table

Programnumber (PN)	Function	Remark		Display	Factory settings
1	Indication of desired initial value	stored with [P] \& [\mathbf{V}]		-999 up to +9999	0.0
2	Indication of desired final value	stored with [P] \& [\mathbf{V}]		-999 up to +9999	200.0
3	Setting of decimal point	with $\boldsymbol{\Delta}$ to the desired decimal point			000.0
4	Display refresh	refresh of the display value		0.2 up to 10.0 seconds	1.0
5	Final value for analog output	option		-999 up to +9999	200.0
6	Offset for analog output	option		-999 up to +9999	0
7	Tara key and counterbalancing	no key front key external key both keys no key front key external key both keys	no counterbalancing no counterbalancing no counterbalancing no counterbalancing auto-counterbalancing auto-counterbalancing auto-counterbalancing auto-counterbalancing	$\begin{array}{\|l} \hline 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 7 \\ \hline \end{array}$	5
8	Input of the measuring range Range monitoring on PN1/PN2 Sensor sensitivity monitoring	$\begin{aligned} & 1=1 \mathrm{mV} / \mathrm{V}-2=2 \mathrm{mV} / \mathrm{V}-3=3.3 \mathrm{mV} / \mathrm{N}- \\ & 4=1 \mathrm{mV} / \mathrm{V}-5=2 \mathrm{mV} / \mathrm{V}-6=3.3 \mathrm{mV} / \mathrm{V} \\ & \text { stored with }[\mathrm{P}] \&[\mathrm{~V}] \end{aligned}$		$1 / 2$ / 3	2
61	Setpoint 1			-999 up to +9999	100.0
62	Setpoint 1 hysteresis			0 up to +9999	1
63	Setpoint 1 operating/quiescent current	$0=\mathrm{R} / 1$ = A		$0 / 1$	0
64	Setpoint 1 delay time			0.0-10 seconds	0.0
66	Setpoint 2			-999 up to +9999	1500
67	Setpoint 2 hysteresis			0 up to +9999	1
68	Setpoint 2 operating/quiescent current	$0=\mathrm{R} / 1=\mathrm{A}$		$0 / 1$	0
69	Setpoint 2 delay time			0.0-10 seconds	0.0

Befor the first operation or after a change of the above mentioned parameters, a calibration is necessary!

Example for programming

| Measuring range: | $2 \mathrm{mV} / \mathrm{V}$ |
| :--- | :--- | :--- |
| Measuring signal: | $0-20 \mathrm{mV}$ |
| Display: | $0-300.0$ |

The basic adjustments concerning to the following program example are the factory settings.

Program advices

Pressing the P-key enters always the program mode with program number 1. The "P1" begins to blink in change with the current value after 3 seconds. After further 4 seconds the system leaves the program mode and goes to the normal mode. In program mode pressing $\boldsymbol{\nabla}$ or $\mathbf{\Delta}$-key selects the current values which is free scalable with both of the keys. Under program number 1 and 2 the memorization will be executed by pressing the \mathbf{P} and ∇-key simultaneously - 4 horizontal bars indicates the storage. All other parameters will be stored automatically after leaving program mode.

Programming.

Switch power on!

Segment test

B.8.8.8.

Enter program mode

Store at scale without load by pressing P and $\boldsymbol{\nabla}$. Take over by display of transversal bars.

To program number 2 with \mathbf{P} and \mathbf{A}

To the stored value with ∇ or \boldsymbol{A}

Set free scalable value

To program number 3 with \mathbf{P} and \mathbf{A}

Example for programming

Set display time.

The following programming steps are neccessary for the setpoint
programming of S1 and S2 only.
To program number 61 with \mathbf{P} and $\mathbf{\Delta}$

To the stored value with $\boldsymbol{\nabla}$ or $\boldsymbol{\Delta}$

Set free scalable value for setpoint S1

To program number 62 with \mathbf{P} and $\mathbf{\Delta}$

To the stored value with ∇ or \boldsymbol{A}

Set hysteresis for S1

To program number 63 with \mathbf{P} and $\mathbf{\Delta}$

To the stored value with $\boldsymbol{\nabla}$ or $\boldsymbol{\Delta}$

To program number 66 with \mathbf{P} and \mathbf{A}

To the stored value with ∇ or \boldsymbol{A}

Set free scalable value for setpoint S2

To program number 67 with \mathbf{P} and \mathbf{A}

To the stored value with ∇ or \boldsymbol{A}

Set hysteresis for S2

To program number 68 with \mathbf{P} and

To the stored value with ∇ or \boldsymbol{A}

Set operation current

The program numbers 5 and 6 are available with option analogue output only.

To program number 5 with \mathbf{P} and $\mathbf{\Delta}$

To the stored value with ∇ or $\boldsymbol{\Delta}$

Set free scalable final indication value for analogue output.

To program number 6 with \mathbf{P} and $\mathbf{\Delta}$

To the stored value with ∇ or $\boldsymbol{\Delta}$

Programming finished.

All programmed values are memorized after 7 seconds. Jumps back into standard mode automatically. Calibration necessary!

Setting possibilities of the jumper field on the rear side.

[^0]: CE-sign
 For unlimited use of the instrument within the directives for electromagnetic compatibility 89/336/EC analog input wires have to be used with shielded cable and cable's shield connected to earth ground at one end only.

